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Chapter 1

Introduction

Optics 1s a rapidly advancing branch of technology. During the past decade optical ele-
ments and systems have become an important part of our daily life. Some examples of
this development are optical fibers in telecommunication, CD players, and security ele-
ments in credit cards and bank notes. The latier are good examples of diffractive optical
elements. This thesis will introduce some theoretical calculations concerning diffractive
optical elements, optical fields, and optical wavegnides.

Let us first briefly consider different approaches to the analysis of optical fields and
systems, illustrated in Fig. 1.1. The simplest approach is known as ray optics: the optical
field is described as a bundle of rays, which propagate in free space along straight lines
and refract at smooth surfaces according to Snell’s law. Although this picture of light
propagation is highly simplified, it is often sufficiently accurate; it is widely employed
in the analysis and design of macroscopic optical systems. However, this ray optical
approach ignores the wave nature of light.

In scalar wave optics, the light field is described by a single scalar wave function,
which satisfies the wave equation. The most important consequences of the wave nature
of light are the phenomena known as diffraction and interference. The diffraction of light
will possess a central role in this thesis, while the interference of light is simply an effect
that occurs when several wave functions are summed. In the limit A — 0, where A is the
wavelength of light, the results of wave optics often reduce to those of ray optics.

In electromagnetic theory the light field is no longer understood as a single scalar
wave function; it is described by a pair of three-dimensional vector fields, These fields are
called the electric and the magnetic field and they are coupled according to the classical
Maxwell’s equations. In quantum optics, the electric and magnetic fields are quantized.
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Fig. 1.1: Different approaches to the description of optical phenomena.



2 1 Introduction

As a result, one deals with operators rather that wave functions. Quantum optical effects
become important when the optical field contains only few photons. We will not be
concerned with quantum effects in this thesis. Real optical fields are never completely
deterministic. Such fluctuating fields are described using optical coherence theory, which
can be formulated in the framework of scalar wave optics, electromagnetic theory, or
quantum optics, and which is used also in this thesis.

In this thesis we employ mostly scalar wave optics and electromagnetic theory of optics.
As mentioned earlier, the wave nature of light implies the phenomenon of diffraction. But
what is diffractive optics? There is no generally agreed definition, but one can classify
under diffractive optics all optical phenomena that are originated by microstructures and
can not been explained using refractive or reflective optics. Optical components that
employ diffraction are known as diffractive elements.

The first diffractive element that gained wide applicability is the diffraction grating [1],
a periodic microstructure with period d. Many other diffractive elements can be described
as gratings at least locally. In grating theory the choice of analysis and design method
depends critically on the grating period [2], and a similar division is applicable to more
complex elements (at least locally) if d is replaced by the concept of characteristic fea-
ture size of the microstructure. Independently of the feature size, one can in principle
solve Maxwell's equations exactly and thus obtain the rigorous solution of the diffraction
problem. However, this is usually a very demanding task; the memory size and the finite
speed of computers limit the maximum period or size of the elements that one can analyze
rigorously. Thus one is often forced to look for approximative methods.

Let us assume that the grating period d (or the size of each feature of the element) is
much shorter than the wavelength A, Then light does not resolve the individual features,
but rather experiences a locally averaged refractive index distribution. In this case the
element can be described as a homogeneous “effective” medium whose effective refractive
index depends on the details of the microstructure and also on the polarization state of the
incident field. On the other hand, if all features of the element are very large compared to
the wavelength, the diffracted field is paraxial and independent on the polarization state
of the (paraxial) incident field. Thus the diffracted field can be described by a single scalar
function and the element can be modelled by means of a complex-amplitude transmission
function that can be determined by optical path calculations [3]. This method is called
the complex-amplitude transmittance method. In the intermediate region d =~ X, the
field must be described as an electromagnetic vector field and the diffraction pattern can
depend strongly on the polarization state of the incident field. This region is called the
resonance domain of diffractive optics [2].

For a long time diffraction was seen purely as a limitation in optical systems. For exam-
ple, the resolution of an imaging system is limited by diffraction. As already mentioned,
the first real application of diffractive optics was the use gratings in spectroscopy [1].
Here diffractive elements are superior to prisms, because their greater dispersion provides
a larger angular separation between different wavelengths. Furthermore, the sign of grat-
ing dispersion is opposite to that of a prism, which enables one to correct the chromatic
aberration by means of a hybrid lens, which is a combination of refractive and diffractive
lenses [4-6).

The most significant step in diffractive optics after the invention of the diffraction grat-




ing was the invention of holography [7-10]. This made it possible to fabricate complicated
diffractive elements by optical interference. Using this technology, amazingly realistic 3D
pictures can be recorded. However, one must have an object which to reproduce, which
may be impossible or impractical in some situations.

If the signal to be generated by the diffractive optical element is sufficiently simple,
it may be possible to calculate the required diffractive structure. A simple example is
a diffractive element that acts like a conventional lens. Such diffractive lenses are often
called micro Fresnel lenses [11]. The original Fresnel zone plate modulated the amplitude
of the field, but one can also make so-called phase Fresnel lenses that modulate only the
phase and thereby focus a larger fraction of incident light [12-14].

The development of computers has made it possible to calculate more complicated
diffractive elements. Originally these were binary amplitude elements, known as computer-
generated holograms [15-17]. However, the problem with amplitude elements is that the
diffraction efficiency is poor, usually at most a few per cent. The solution is again the use
of microstructures that modulate only the phase of the field [18-24]. In fact, it is known
that the control of phase is far more important than the control of amplitude [25].

With the expansion of diffractive optics it has become apparent that this flexible
technology can be seen as a generalization of conventional optics [26,27]. A large number
of different applications have been proposed and demonstrated. One rapidly growing
branch of applications is optical document security. Conventional holograms are used
as security features in, e.g., credit cards, but they are rather easy to copy [28]. One
must therefore employ more sophisticated microstructures, which are extremely hard to
copy, or to produce with sufficient quality without access to expensive equipment, such
as electron beam lithography [29-34].

Diffractive optics also has a large number of industrial applications. For example, one
can shape a Gaussian laser beam to produce a desired intensity distribution, such as a
flat-top profile, acress some other plane [35,36]. Furthermore, cne can divide a single
laser beam into many separate beams, which can be coupled simultaneously into, e.g.,
optical fibers [37]. Such multiple beam splitters are useful, for example, in high-power
laser material processing [38]. Other industrial applications include solar cells [39] and
precision alignment [40]; even applications in space technology have been proposed [41,42].
I infosmation processing it is possible to use difiractive optical elements in different ways:
Apart from classical applications in spatial filtering [3] one can, e.g., use acousto-optic
diffractive elements in signal processing [43,44] or realize Haar wavelets [45]. Furthermore,
diffractive optics is a central technology in optical interconnections [46-49].

It seems likely that the importance of diffractive optics will continue its rapid increase
also in the future. To reduce the size of optical systems, the packaging and integration
of diffractive elements will gain importance [49-52]. Also, there will be more interest
in dynamic optical elements, which will require investigation of new optical materials.
For example, photorefractive [53], liquid-crystal [48,54,55] and bio-organic materials are
interesting in this context. In modern physics, the boundaries between different fields of
science have smoothed. The influence of chemistry, communication theory and informa-
tion processing in the development of optics has become ever more important.

This thesis can be divided into two parts. In the first part, comprising Chapters 1-7,
all the theory needed later is introduced to make the discussion reasonably self-contained.
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In the second part, several different diffractive optical elements and systems are analyzed.
In Chapter 2, the basis for the entire thesis is laid: Maxwell’s equations and the electro-
magnetic boundary conditions are presented, and measures for the energy properties of
the field are introduced. In Chapter 3, Maxwell's equations are solved in homogeneous
media. This provides a rigorous method fo calculate the electromagnetic field in any
plane z = z; if the field is known across a reference plane = = z5. Some important ap-
proximations are also derived. Chapter 4 provides a brief overview of optical coherence
theory: it is well known that completely coherent fields can not exist and therefore the
understanding of coherence theory is relevant also in diffractive optics. Indeed, spatially
and temporally partially coherent fields will be considered rather frequently in this thesis.

In Chapter 5 we discuss perhaps the most fundamental theoretical problem in diffrac-
tive optics, i.e., plane wave diffraction from an infinite grating. Solution methods to be
employved later in this thesis are derived rigorously by solving Maxwell’s equations to-
gether with the appropriate boundary conditions for a periodically modulated medium.
Some other frequently used methods are also reviewed, and comments on the usefulness
of the different analysis methods in various geometries are given. In reality, neither the
illumination wave nor the diffractive element is infinite. Thus, in Chapter 6, rigorous
analysis methods of both non-periodic elements and finite incident beams are introduced.
Also a method to solve diffraction problem with partially coherent incident field is de-
scribed. In Chapter 7, some useful approximative methods to solve diffraction problems
are introduced. Typically, these methods are much easier to apply than the rigorous
methods, which motivates one to apply them whenever possible. However, there exist so
many approximative methods that only those employed in this thesis are introduced.

In Chapter 8, the basic theory of designing diffractive elements is discussed. Some
design methods based on geometrical optics, paraxial wave optics, and rigorous theory
are reviewed. This Chapter also contains some original material: an iterative Fourier-
transform algorithm for spatially partially coherent light is presented. Furthermore, the
design and analysis of a beam shaping element in the non-paraxial domain of diffractive
optics is introduced. The main results have been published in Ref. [56].

The remaining chapters contain results obtained by the author. In Chapter 9, some
methods to modify the coherence properties of light by diffractive elements are investi-
gated. A new method to reduce spatial coherence by means of a vibrating grating is
introduced. Then the use of Bragg selectivity of a thick grating to extract a coherent
component from a partially coherent field is described {57].

Chapter 10 deals with the phenomena of self-imaging and propagation invariance
of optical fields. The effect of spatial partial coherence of the incident field in a non-
paraxial Talboi imaging system is analyzed. It is shown that the intensity fluctuations
that appear in non-paraxial analysis decrease when the degree of spatial coherence of the
field is suitably reduced. Further, the validity of the paraxial approximation in the case of
Lau effect {58! is analyzed. As reported in Ref. [59], serious intensity fluctuations appear
even when the length of the grating period is several hundreds of wavelengths. Finally,
a new analysis method of locally one-dimensional periodic elements is introduced and
applied to the analysis of finite-aperture Bessel beams generated by diffractive axicons.

Chapter 11 deals with zeroth-order diffractive elements. A new method for encoding
an arbitrary amplitude and phase modulated field into an on-axis zeroth-order structure




is introduced with sonte examples [60,61]. The final Chapter 12 is concerned with the
application of rigorous grating theory to waveguide analysis. This method is applied to
calculate beam coupling into planar waveguides, the analysis of discontinuities in waveg-
uides, and phase modulation by ion-exchanged slab waveguides.

The work presented in this thesis is of theoretical and numerical nature. All theoretical
developments are presented in detail, but only a limited number of numerical examples
are included to illustrate the main features of the theoretical results. A part of this work
has already been published or accepted for publication:

1. P. Vahimaa and J. Turunen, “Lau effect: non-paraxial analysis,” Journal of Modern
Optics 43, 1361-1369 (1996).

2. J. Turunen, P. Vahimaa, M. Honkanen, O. Salminen, and E. Noponen, “Zeroth-order
complex-amplitude modulation with dielectric Fourier-type diffractive elements,”
Journal of Modern Optics 43, 1389-1398 (1996).

3. M. Kuittinen, P. Vahimaa, M. Honkanen, and J. Turunen, “Beam shaping in non-
paraxial domain of diffractive optics,” Applied Optics (in press).

4. P. Vahimaa and J. Turunen, “Bragg diffraction of spatially partially coherent fields,”
Journal of Optical Society of America A {in press).

5. V. Kettunen, P. Vabimaa, J. Turunen, and E. Noponen, “Zeroth-order coding of
complex-amplitude in two dimenstons,” Journal of Optical Society of America A (in
press).

These publications contain some experimental verifications of the author’s theoretical and
numerical results. Several other publications based on the work presented in this thesis
have either been submitted or are under preparation.




Chapter 2

Maxwell’s equations and boundary
conditions

2.1 Maxwell’s equations

Let us consider a time-harmonic electromagnetic field of frequency w. It is characterized
by three-dimensional electric and magnetic fields of the form

E(r,t) = R{E(r)exp(—iwt)}, {2.1)
H(r,t) = R{E(r)exp(—iwt)}, {2.2)

where » = (z,y, z) is the three-dimensional position vector and ® means the real part.
In a continuous medium, these time-harmonic fields satisfy Maxwell’s equations

V x B{r) = iwB(r), (2.3)

V % H(r) = J(r) - iwD(r), (2.4)
V- D{(r) = p(r), (2.5)
V-B(r) =0, (2.6)

where D(r), B(r), J(r), and p(r) are the electric displacement, the magnetic induction,
the electric current density and the electric charge density, respectively. In linear isotropic
media we have constitutive relations

D(r) = {r) E(r), (2.7)
B(r) = p(r)H(r), (2.8)
J(r) =o(r)E(r), (2.9)

where e(r), p(r), and o(r) are known as the permittivity, the magnetic permeability, and
the conductivity, respectively. The permittivity € is written as ¢(r) = e,(r}e, where ¢
ig the permittivity in vacuum and e, is the relative permittivity. The refractive index of
the medium is defined as n{r) = /¢, (7).

In the case of nonlinear materials, ¢, 1+ and ¢ are also functions of the electromagnetic
field itself. Furthermaore, if the medium is anisotropic, they are not scalar functions but
tensors. However, in this thesis we always assume that the medium is linear and isotropic.
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2.1 Maxwell’s equations

2.1.1 Two-dimensional fields

In the general three-dimensional case, one has to solve four scalar field components simul-
taneously; one can eliminate, e.g., E, and H; from Egs. (2.3} and (2.4} using Eqs. (2.5)
and (2.6). If the field and the medium are both invariant in ¢ direction, all partial y-
derivatives vanish in Maxwell’s equations (2.3)~(2.6), which consequently reduce to the
following set of partial differential equations:

iwBy{z, z) = —%Ey(m, z), (2.10}
wB.(5,7) = 2 By(x,) (2.11)
iwBa(,2) = - By(w, %), .
2H(f:;~)——£1H('a:")—J('z:~)~~-'D( z) (2.12)
57 He(#,7) — 52 Hile,2) = Jy(@,2) ~ iwDy (2, 2), .
T, 2) ~ wDg(z,2) = —g:Hy(:r, z), (2.13)
. 2
Jo(z, 2} = lwD,(z,2) = %Hy(:v,z), (2.14)
a 7 .
-é-ng(:I:,/.) - %Ez(:b,..) = iwBy(z, z). (2.15)

On the other hand, it follows from the constitutive relations (2.7)-(2.9} that E||D||.J and
B||H in an isotropic medium. Thus Eqs. (2.10)~(2.15) form two independent sets.

In the first three equations, Egs. (2.10)-{2.12), the only nonvanishing component of
the electric field is F,(z, ). This component compietely specifies the electromagnetic
field, since the non-vanishing components of the magnetic field, H, and H., are obtained
directly from Egs. (2.10) and {2.11}, provided that £, is known:

H{z,z)= z,2)+ é}%Ey(:s,z) . (2.16)

1
— |~Z—E
twie(z, 2) [ T il
Here & and z represent the unit coordinate vectors. One can obtain a differential equation
for E, alone by substituting Egs. (2.10) and (2.11) into Eq. (2.12) and using constitutive
equations (2.7)-(2.9):

af 1 8 1 9 ) _ B
% |, 905" Z)] "oz [H(m, z)ézﬁy(as,z)] +? [e(, 2) + do(w, 2)fw] By(x, zzz—l S)

This is called TE polarization.

In diffractive optics, one is usually interested in non-magnetic materials, with g = yp =
constant. Moreover, we define the complex relative permittivity é.(x, z) and the complex
refractive index fi(z, z) by

&z, 2) = [z, 2)] = (2, 2) +io(z, 2)/weo. (2.18)
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These quantities reduce to the corresponding real functions e, and n when the conductivity
o vanishes. The wave number of the field is defined as

kE=2w/)=uw/c=uwlem)? {2.19)

where A and ¢ are the wavelength of the field and the speed of light in vacuum, respectively.
Using this notation, Eq. (2.17) reduces to the Helmholtz equation
& J* 3
@Ey(m, z)+ 5’—2—2-Ey(a:, 2) + k& (2, 2) By(a, z) = 0. (2.20)
On the other hand, in Egs. {2.13)-(2.15) the only nonvanishing component of the
magnetic field is H,(x, z). This is called TM polarization. Substitution of Eqs. (2.13) and
(2.14) into Eq. (2.15), with constitutive equations (2.7)-(2.9), yields

a[ 1 & 6[18

[, S —— —_— ;2 .2 ) = UL «
Oz | &z, z) dz dz | & (2, 2) F)zHy(m'z) + i Hy(2,2) =0 (2.21)

Hy(m,z)} +
Again, once Hy is known, one can use Eqgs. (2.13) and (2.14) to solve the electric field.

2.2 Boundary conditions

Maxwell's equations hold when the material parameters €, p and o are continuous, If a
discontinuous boundary separates two continuous media 1 and 2, one can transform the
field vectors across it using the electromagnetic boundary condition. We denote by s
a uni$ vector of the boundary, which points from medinm 1 to medium 2, and write the
boundary conditions as

- (Ba—B1) = 0, (2.22)
g - (Dy— D1) = ps, {2.23)
ns X (Ba— By) = 0, (2.24)
rs x (Hy — Hy) = Jg, (2.25)

where pg and Jg denote the surface charge density and surface current density, respec-
tively. If medium 2 is perfectly conducting (¢ = o), the field inside it must vanish, i.e.,
B, = Hy = Dy = Ey = 0. If the conductivity is finite or both materials are dielectric,
the surface charge and current densities vanish.

2.3 Energy density and Poynting vector

Most often we are interested in the energy properties of the electromagnetic field. The
electromagnetic energy density is defined as

w(r, t) = we(r,t) + wp(r. i), (2.26)

where

we(r,t) =  B(r,1)- D(r,1) (2.27)
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is the electric energy density and
1
wy{r, 1) = -2—H{'r,t) - B{r,t) (2.28)
is the magnetic energy density. Since the frequency w of the field is large in the optical

region, one can not usually measure the instantaneous values of these energy densities
but rather their time averages [62]

fuelr, 8)) = (MBI (2.29)

and

1
(wp(r,t)) = ZM(T‘)§H("")|2- (2.30)
The time average of the electromagnetic energy density is then
(w(r, 1)) = {we(r, 1)) + (walr, 1)), (2.31)

The Poynting vector § = E x H is a measure of energy flow in the field. Again, one
is interested in the time average

(S(r, 1)) = %%{E(’r} x H*(r)}. (2.32)

To obtain the magnitude of the energy flow in some specific direction, one simply takes a
scalar product of the Poynting vector and the unit vector in that direction.




Chapter 3

Wave propagation in homogeneous media

In this Chapter we will solve Maxwell’s equations in a homogeneous medium. The ge-
ometry of the problem is illustrated in Fig. 3.1. The electromagnetic field is supposed
to be known across some plane = = zp and one is interesting in the field at the plane
5 = 2+ Az. The medium between these planes is assumed to be homogeneous and, for
simplicity, also dielectric with refractive index n. The field at the plane z; can either he
infinite or limited by some aperture 4.

3.1 Angular spectrum representation

3.1.1 Rigorous solution

The simplest solution of Maxwell’s equations is a plane electromagnetic wave. A linear
combination of these plane waves is, of course, also a solution. In fact, an arbitrary
electromagnetic field in a homogeneous medium can be represented as a linear combination
of plane waves [63,64]. This is not the only possible representation of the electromagnetic
field, but it is simple and elegant.

It follows from Eqgs. {2.3) and {2.4) that

VEE(r) + k*n’B(r) = 0. (3.1)

In what follows we derive the propagation laws for E(r) in Eq. {3.1). Since a similar
equation holds for all components of the electric field, one can separately solve E,. The
third component E. is then obtained from Eq. {2.5), and finally one can compute all
components of H from Eqs. (2.3) and (2.8). The exact solution of Eq (3.1) for a single

y s Y
7 (497 x
A (x\y)
r4
=7, r=z,+Az

Fig. 3.1: Geometry of field propagation in a homogeneous medium.




3.1 Angular spectrum representation i1

scalar field component I may be expressed in the form
Mz, y,2) ff (o, B exp{iln{ax + By +w{x — 20)]}dadp
+f/ (a,B) exp{i2nfaz + By — w(z — )] }dads, (3.2)
-0

where w can be either real or imaginary:

[N = (@® + 822 when o + 87 < (n/A)?
w= { if{a? 4+ 8%) ~ (n/A)*Y?  otherwise. (3.3)

With w real, the solution {3.2) represents plane waves that propagate in directions k =
2r(a, B,w) or k = 2r{e, 3, —w). When w is imaginary, the waves cither decay or grow
exponentially.

It follows from the radiation condition [2] that, in the far-zone, the field must assume
the form of an outgoing spherical wave. Thus, in Eq. (3.2}, R(a, 3) = 0 and the solution
reduces to

(z,y, 2 /f (e, B, z0) exp {i27 [a - By + w(z — z)]} dedB, (3.4)

where o
T(e, 8, 70) = [Lm Uz, y, 2o) exp[—12n{ax + By}|dzdy (3.5)

is known as the angular spectrum of the field at =z = z5. Note that if U initially contains
high spatial frequencies with a? -+ 3% > (n/A)?, the corresponding waves decay expo-
nentially in positive z-direction. Such waves are called evanescent flelds. They appear
whenever there exist discontinuities in the medinm. Although evanescent fields do not
carry energy away from the discontinuity boundary, they can be useful. For example, in
atom optics one can use evanescent electric fields as mirrors or gratings [65].

3.1.2 Paraxial approximations

Angular spectra of many wave fields are of significant amplitude only when the angle
between the wave vector k and the z-axis is small, in other words, when the function
T(a, 3, 2) is appreciably non-zero only when o + 82 < (n/A)%. In such circumstances
we can employ the paraxial approximation in the spatial frequency domain,

\2 12 7A
2mw = kn [l - F(a2 +,5‘2)] ~ kn - ~7r—1—(a2 + B (3.6)

in Eq. (3.4) to obtain the Fresnel propagation formula

Ulz,y, ) nexp(ihniz) [ imn (.'1':2 4 yz)] (3.7)

iAAz
oo 2 __- w1 I,
xj[ Uy, zo)exp{)‘A (@ +y )]exp[ As (zz’ +yy)]dmdy.

—00
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H, in addition, the phase factor (mn/AAz)(z™ + ') in Eq. (3.7) is small, we obtain the
Fraunhofer propagation formuia

nexp(iknAz irn
Uiz p.) DU exp [ <m2+y“’)]
ff U,y 20 ew[ AL 2 (2 + gy )] da'dy’, (3.8)

which is applicable in the far zone. The Fraunhofer approximation is certainly valid
if the field vanishes outside some aperture A and AAz is much larger than the size of
the aperture. However, it can be accurate even if the distance Az fails to satisfy this
condition.

The strength of the angular spectrum representation is that the field can be propagated
from one plane to another by Fourier transforms, which can be evaluated efficiently using
the Fast Fourier-Transform: (FFT) algorithm. Owing to the inherent periodicity of the
FFT algorithm, non-periodic fields must be zero-padded, i.e., one must add a frame of
zeros around the aperture. The amount of zero-padding depends on the angular spectrum
and the distance between the planes.

3.2 Rayleigh-Sommerfeld diffraction formula

The angular spectrum representation is a rigorous method to propagate the electromag-
netic field in the spatial frequency domain, whereas the approximate Fresnel and Fraun-
hofer integrals are purely space-domain representations of field propagation. Rigorous
versions of space-domain methods also exist. For example, the Weyl representation of a
spherical wave (see, e.g., Ref. [63], page 126) transforms the angular spectrum represen-
tation into the Rayleigh-Sommerfeld diffraction integral of the first kind:

1 N 2 .
Ulz,y,z /f T (m — 1) Eexp(mkru)dm’dy', (3.9)
where
Ty = \/Azz +{z -2+ (y - ') (3.10)
We will apply the Rayleigh-Sommerfeld formula in the cylindrical coordinate system
(z2rms (2= e o
y = rsing Y = psing
i.e., in the form
2% nz
U(” ’ qs; f PU 2,4, % (n}urlz ) )\T'2 exP(ln]"? 12)(1[3(1(,0, (3'12)
where now
Ty = \/A22 + 72 4 p? — 2rpcos{p ~ ¢). (3.13)

In Eq. (3.12) one can make a paraxial approximation in the space-domain, i.e.,

T2 2 Az + (1 + p?)/2 — rpcos(p — ¢), (3.14)
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which leads to the Fresnel and Fraunhofer approximations [3].

Clearly, with the Rayleigh-Sommerfeld diffraction formula, the field at the plane
2 = 79 + Az can be calculated by two integrations, whilst the angular spectrum rep-
resentation requires four integrations. Thus if one is not able to use FFT-algorithms or
analytical solutions, the Rayleigh-Sommerfeld diffraction integral may be faster to eval-
nate numerically. This happens, e.g., when the aperture of the element is much larger
than the signal window. There exist efficient methods to solve the Rayleigh-Sommerfeld
diffraction formula nwmerically, especially in the analysis of waves in focal regions of
lenses [G6].




Chapter 4

Coherence theory

Thus far, the electric and the magnetic fields have been assumed time-harmonic and
therefore deterministic, or coherent. However, fully coherent fields do not exist in nature.
‘We next provide a short introduction to optical coherence theory. We assume throughout
this Chapter that the field propagates in a homogeneous medium with refractive index n.
A comprehensive analysis of partially coherent fields can be found in Ref. [63].

4.1 Complex analytic signal

Let V) (r,#) denote the real classical scalar wave function (a single scalar component
of the electromagnetic field} at point » and time ¢ If the function V) (r,¢) is square-
integrable, i.e., if

o0 2
[ o] a <, (4.1)

-0

it can be represented as a Fourier-integral
[es]

V&, t) =f o7, w)exp(—iwt)dw. (4.2)
w0

Since V") (r, 1) is real function, it follows that v(r, —w) = v*(r,w). Thus all the informa-
tion about the wave function is contained in the positive part of the function v(r,w). It
is convenient to define a complex analytic wave function as

V{r,t) = fooo v(r, w) exp(iwt)dw. (4.3)

This complex analyiic signal is a natural extension of the complex representations of the
monochromatic fields in Egs. (2.1) and (2.2) (see, e.g., i63], Chapter 6).

4.2 Cross-correlation function

Because of the high frequencies (of order 10* Hz) of optical fields, one is usually not able
to measure the field itself but rather its time averaged values, as already mentioned in
Chapter 2. Usually the fields of interest are stationary, which means that the values of
the statistical properties of the field are independent of the origin of time. Physically re-
alizable fields are typically ergodic, which implies that the ensemble average over different
realizations of the field is the same as a time average of a single realization.
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Let us define the cross-correlation function of the field as
F(TlsTihtlat2) = (1/*(7‘11t1)v(7'25t2))23 (44)

where (), means averaging over an ensemble of different field realizations. This is called
the second order mutual coherence function. If the field is both stationary and ergodic,
the ensemble average may be replaced by the time average

[(ry,re,7) = (Ve )V (rs,t+ 7)1
1T
= lir 57 |y VH{r,t)Vire, t+7)dt. (4.5)

Toeo 2

In this thesis all fields are supposed to be both ergodic and stationary. Thus we may
suppress the index T and interprete all averages as either time or ensemble averages.
The instantaneous intensity of the field is defined as I{r,t} = V*(r,#)V(r,t} and its
time average is
(I(r,)) = (V*(r,£)V (2, 8)) = T(r, 7,1} (4.6)

The definition of the cross-correlation function, Eq. (4.5}, implies that
I‘(TZ)Tl:T) mr*("‘l?”‘?} _T}' (47)

It is convenient to normalize the mutual coherence function as

_ F(T1,T23T)
W70 7) = T i OV

(4.8)

It follows from the Schwarz’s inequality that the quantity y(ri, s, 7}, known as the com-
plex degree of coherence, satisfies

0 < jy(r,me, 1) S L. (4.9)

If |y(r1, 72, 7)| = 1, the field is said to be fully coherent in the space-time domain. If, on
the other hand, |y(r1, 72, 7)| = 0, the field is said to be completely incoherent.

One can similarly define higher-order coherence functions [63], but for our purposes it
suffices to consider these second-order coherence functions.

4.3 Cross-spectral density function

The cross-spectral density function W{ry, 72,w) is defined as the Fourier-transform of the
mutual coherence function:

1 00
Wirs,mae) = o= [ T(ry,re,7) expliwr)dr. (4.10)

‘When 7, = rq, one usually denotes by

S(r.w) =W(r,r,w) (4.11)
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the spectral density (or the power spectrum) of the field. Conversely,

Plri,re,7) = fooo W{rL, o, w) exp{ —iwr )dw (4.12)

and
T(r,7,7) = fo 5(r,w) exp(~iwr)dw. (4.13)

Equations. (4.10) and (4.12) constitute the so-called generalized Wiener-Khintchine the-
orem,

From Eq. (4.7) and the definition of the cross-spectral density function it follows that

W(re, r1,w) = WHry, ry,w). (4.14)

Using the Fourier-integral representation of the complex analytic signal, it also follows
that

v (r,whv(ry,w)) = W{r,, ro,w)d{w — w'), (4.15)

where §(w) is the Dirac delta function. Thus different frequency components of the field
are completely uncorrelated. The cross-spectral density function W (r1,72,w)} measures
the correlation between points 7 and 7y at frequency w.

It can be shown (see [63], page 171) that the cross-spectral density is a non-negative

definite Hermitian kernel: for any n points vy, rs, ..., v, for any n complex numbers q,,
gy «-., Oy, and for any frequency w,
ki ki

> @t W (e, rp,w) > 0. (4.16)
=1 k=1

With the choice n = 1, it follows that the spectral density function is a non-negative

function, which is a very desirable property for a spectrum. Similarly, the choice n = 2
implies that

(W(r,ry,w)| < (W(ry, 71, w)] 2 [ Wy, o, w)] Y2, (4.17)

Thus it is possible to normalize the cross-spectral density function as

_ Wiry, re,w)
M) = o ) SCra T 19

where the normalized function p{r1, Ty, w) is called the spectral degree of coherence. It
follows from Eq. (4.17) that

0 < lulry,re,w)| < 1. (4.19)

It should be noted that, in general, ¥{r1,72,7) and pry, 72,w) are not Fourier-transforms
of each other {67].




4.4 Propagation of cross-spectral density 17

4.4 Propagation of cross-spectral density

Let us suppose that the cross-spectral density function of the field is known across the
plane z = zo. It was shown above that different frequency components are non-correlated
and may therefore he handled separately. For this reason, the explicit frequency depen-
dence is suppressed in this Section to simplify notation. One is interested in the cross-
spectral density function W (s, u1, 21, %2, Y2, 22), with W(z}, 41, 20,23, 5, 20) assumed to
be known. Similarly as in Chapter 3, one obtains

W(z1,1, 21, T2, Y2, 22)
= f[f[ Ala, B1, 20, a2, B, 20) exp[—i2m (w00 ~ 2200 -+ 9151 — 2}
x exp{ —i27[w* (a1, /1) Az — w(ag, B2}Az) }dadadfdfy, (4.20)
where w{a, 8) is given by Eq. (3.3), Az; = z; — 20, J = 1,2, and the function

o
_4.{&1,,61,20,052,,62,2’0) = ffff m}'(a“l: ylszﬂvw%yhzo} (4'21)
-
x explim(a@; — s + Bign — Foyeldzidaady;dys
is known as the angular correlation function [68].
Very often one is interested in the cross-spectral density in the far-zone. Let us denote
by r = r the position vector of the point P, where 3 is a unit vector. Using the stationary
phase method (see e.g. [63], pages 128-144}, the cross-spectral density is found to be

2 cosf ikn(r, —
W (r18,,7982) = wmmm/,\,nsly /A, Zo, N2z /)\,négy/)\,z[)}w,

A2 ™

(4.22)
where @ is the angle between the unit position vector § and z-axis. The radiant intensity
of the field, which appears to be the only quantity in physical radiometry that can be

defined without ambiguity [69], is defined as
J(8) = r*W(r3,73) when » — o0, (4.23)
and thus

J(3) = (”C“’Sg) A(ndie/ )\ né1y/ A, 20, nbaz/ N nday/ N, 20)- (4.24)

The radiant intensity determines how much energy propagates in the direction 8. If the
field is completely spatially coherent in the plane z = z, it follows that

ncosf nsg nsyN\|
J()“( ) T(A"TJ)

4.5 Coherent mode representation

(4.25)

It follow from Mercer's theorem (Ref. [63], page 68) that the cross-spectral density function
can be represented as

Wrraw) = 3 ealw)dh(rywin(re,w), (4.26)
n=0
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where 1(r,w) are the eigenfuactions and c,{w) are the eigenvalues of the Fredholm
integral equation

fAW(rl,rg,w)drn(r,w)clarl = (Wit {ra, w). (4.27)
A closer examination of the components

Wa(ry, row) = cp(w) s {ry, wihy(re, w) (4.28)

shows that
| (r1, 7o, w)| = 1 (4.29)

for all n. Thus all the field components ¢,(r,w), which satisfy the standard Helmholtz
equation, are completely spatially coherent. The decomposition (4.26) is therefore called
a ccherent mode representation of the field. It allows one to treat a spatially partially
coherent fleld as a sum of completely coherent fields. Thus one can, for example, solve
any diffraction problem for a spatially partially coberent field by sclving the probiem
separately for each coherent mode and thereafter sum the resulting modal fields to obtain
the complete cross-spectral density function of the diffracted partially coherent field.

4.6 Model fields

Let us consider some examples of partially coherent fields. If the spectral degree of
coherence p(r1, 72, w) depends on 7, and 7, only through the difference ' = 5 —r;, one
speaks of a Schell-model field. The cross-spectral density function is then of the form

W(ry, ra,w) = [S(r1,w) {2, )| ulry — r1,w). (4.30)

Furthermore, if both the spectral degree of coherence and the spectral density are Gaussian
functions, i.e.,

I¢

S(r,w) A*(w)exp [—r2/2w2(w)] ) {4.31)
plr,w) = exp [—r2/20’§(w)] , {4.32)

the field is called a Gaussian Schell-model field. Here w and o, are positive quantities
that describe the width of the intensity distribution and the correlation length of the field,
respectively, and A(w) is a measure of the weights of different frequency components. If
g4 2> w, the field is essentially spatially coherent and it behaves much like a completely
coherent Gaussian field (e.g., 2 fundamental-mode laser beam). I, in contrary, o, <
w, the fleld is globally incokerent and it is called quasi-homogeneous. The field can
nevertheless propagate in a beamlike fashion [70-72].

Let us consider a two-dimensional Gaussian Schell-model field, which has its waist
located at z = zp and is invariant in y direction. Then the cross-spectral density function
at the waist is

W1, 20, 03, 20) = Wy exp [—{-'C% + -"ﬁg)/wz] exp [—(331 - -'62)2/203] , (4.33)
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where W, is a constant. Its coherent modes are Hermite-Gaussian functions [72,73]

1 2 \"_ [(2v2 2
(L) = —— | — — -—, 4.34
QS ('L‘) ,'an’! (TF'U.'Q,B) Hﬂ ('LU\/E) exp( wzﬁ) ( 3 )
where
A= 1+ (w/og)"]2. (4.35)
The corresponding modal coefficients are found to be
wf {1-8\"
=Wovor— | =—= :
Cn ug\/_wHﬁ(Hﬁ) , (4.36)

i.e., the number of modes with significant amplitudes increases rapidly when the state of
coherence of the fleld is reduced.




Chapter 5
Grating diffraction

5.1 Geometry of the problem

Consider the geometry of Fig. 5.1. Between the planes z = 0 and z = h there exists an
element with a periodically modulated refractive index distribution. Qutside this region
the media are supposed to be homogeneous. The element is illuminated by a plane wave
arriving from the negative z-direction. The problem is to solve the complex amplitudes
of all plane wave components of the field scattered by the modulated region. If the
modulation of the refractive index distribution or the surface relief profile is slow compared
to the optical wavelength A, the problem can usually be solved using the traditional
theories of refraction and reflection at discontinuous interfaces ar graded-index media. If,
however, the details in the modulated region are comparable to A, rigorous diffraction
theory must be applied.

The media in regions 1 (z < 0) and 3 (z > k) are supposed to be homogeneous with
permittivities €, = €, = n} and ¢, = ¢; == n, respectively. In general, the medium in
region 2 {0 < z < h) can be arbitrarily modulated in =, y, and z directions. This region
is illuminated by a plane wave incident at some angle 8 between the wave vector k and
the z-axis.

In this thesis only y-invariant configurations of the type illustrated in Fig. 5.lare
needed. Therefore the TE/TM decomposition of the field (see Section 2.1.1) is valid.
Rigorous diffraction analysis of gratings in conical incidence (the incident wave does not

T'ig. 5.1: Geometry of the grating diffraction problem.
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propagate in the zz plane} is also possible [74-77], as is the analysis of 3D modulated
gratings [78-82).

5.2 Rayleigh expansions

Since the refractive index distribution is supposed to be periodic in the region 2, i.e.,
&z +d,z) = &(x, z), it follows from the Bloch theorem that all the field components in
region 2 must be psendoperiodic [2]:

Uz +d, z) = Ulz, z) exp(iupd), (5.1)

where up = kn,sin & and # is the angle of incidence. As it was seen in Chapter 3, in region
3 all components of the forward-propagating part of the diffracted electromagnetic field
at z = h can be expressed as a linear combination of plane waves

Uz, h) = foo T(ex, k) exp(i2raz)da. (5.2)

Because the diffracted field must be pseundoperiodic, it follows that

T(a,h) = i T = U /27), (5.3)

m=—0oo

where u, = up + 2rm/d and é(a}) is the Dirac delta function. Writing up = knssing,,
and recalling that ug = kn; sin @ one obtains the familiar grating equation

nysinb, = n;siné +mi/d. (5.4)

In region 1 one obtains a similar expression for the backward-diffracted orders:
ny8in &, = ny sinf + mA/d. {5.5)
Substitution of Eq. (5.3) in the two-dimensional form of Eq. (3.4) yields the so-called

Rayleigh expansion

Ulz.z 2 h) = i T exp{iftimz + tn{z — )]}, {5.6)

m=—00
where
. [(kna)® — w2 1Y% if |um| < kng (
™ i[ud, — (kng)?]Y?  otherwise. :

The Fourier coefficients T, can be calculated from

ct
-1
S

p oL .
= ;ifo Ug(, ) exp(~iupz)d (5.8)

if the field at the plane z = & is known.
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Using similar reasoning, it follows that the outgoing field in the region = < 0 can be
written as

Ua(w,2<0) = 3" Rmexpli(ume —rpz)], (5.9)
where
C (R = M Jug| €k (5.10)
T = ifuZ, — (kn1)?JY*  otherwise ‘
and

1 dU . 511
Y o

Expressions (5.6) and (5.9), known as Rayleigh expansions, can be generalized to a three

dimensional case, where the grating is periodic in both z and y directions with periods
d; and d,, respectively.

5.2.1 Detour-phase principle

We just showed that, outside the grating area, the diffracted field can be expressed in the
form of Rayleigh expansions. Let us suppose now that the angle of incidence is 8 = 0.
Then any diffracted field component at the grating surface z = & may be expressed as

Uglz, B) = i T exp(i2nma/d), (5.12)

M=-~C

where 1 .
T == fo Ua(z, h) exp(—i2nma/d)dz. (5.13)
If the grating is now shifted in z direction by an amount Awx, as illustrated in Fig. 5.2,
the difiracted field becomes
Uz + Az, h) = Uy(z, ). (5.14)
Thus

T = l/dU' h) i2rma/d)d
m = o 2z, k) exp(—i2rma/d)dz

1 d—-Ax
= Zexp(-i2mmAz/d) f L. U, h)exp(~i2mma’ fd)da'.  (5.15)
~Az
Since U, is a periodic function, integration over one period does not depend on the initial
point. Thus one obtains
Ty, = Tmexp(~i2nmAe/d). {5.16)
This result is the general form of Lohmann’s famous detour-phase principle (15, 16).

Equation (5.16) implies that if we shift the grating in the & direction by ar amount
Az, then the phase of the mth diffracted order changes from ¢, to

P = bm — 2rmAz/d. (6.17)

This principle permits the control of the phase of any diffracted order, except the zeroth
order. The result is fully rigorous and it holds equally for diffracted orders in region 1.
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0 | Axte- x

Fig. 5.2: Lohmann’s detour-phase principle.
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Fig. 5.3: Different types of gratings: (a) binary lamellar grating, {b) multilevel
lamellar grating, (¢) continuous surface profile grating, (d) index modulated grating.

5.3 About the solution of grating-diffraction problems

There exist plenty of methods to solve grating-diffraction problems numerically. For the
purposes of this thesis, it is not necessary to describe the details of each method since
several excellent reviews exist (2,83, 84].

In Fig. 5.3 some different types of gratings are illustrated. In Fig. 5.3a the refractive
index in region 2 is constant between some values z; and z,4; and uniform in z direction
through the entire region {0 < z < h. The refractive index values n; can be arbitrary, but
often only two different values, usually n, and ng, with one of them equal to unity, are
preferred for fabrication reasons. In Fig. 5.3b the grating contains several layers similar
to Fig. 5.3a. This kind of grating is called a multilevel lamellar grating. These two types
of lamellar grating can be fabricated, e.g., by etching into glass [85-87), with direct laser
beam [88, 89] or electron beam [90-92] writing of the mask structure. In Fig. 5.3c the
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boundaries between areas with different refractive index are no longer assumed to be
vertical. This type of profiles can be made by variable-exposure laser [1,93] or electron
electron lithography [94-97]. The refractive index can also vary continnously inside the
grating area. In Fig. 5.3d this kind of index-modulated grating is represented; it can be
realized, e.g., by optical holography [98-100].

Basically, solution methods of the grating-diffraction problem can be divided into
two different categories: space-domain methods and modal methods. In space-domain
methods, one solves the entire diffracted field (a sum of all diffracted orders) simul-
taneously all over the space and thereafter projects the diffracted field into the base
formed by the diffraction orders. The best-lnown example of these methods is the integral
method [83,101]. The weakness of space-domain methods is that the field is represented
using points in z-axis as a base. Thus the base is uncountable and the number of sampling
points one must include into the analysis may be very large. However, these methods must
be used when one wants to analyze continuous surface profile gratings rigorously.

In modal methods, one expresses the diffracted field as a sum of pseudoperiodic wave-
guide modes inside the grating and effectively transforms the calculations into the spatial
frequency domain. The base in which the field is represented is now countable and the
number of base functions that must be included in the calculations is usually smaller
than in space-domain methods. Modal methods can be used directly when the grating is
invariant in the z direction. Thus these methods can be applied in the cases of lamellar
and index-modulated gratings. However, one can also analyze continuous profile grat-
ings by dividing the grating area into several layers (as illustrated in Fig. 5.3b), which
are approximately lamellar gratings [102], if the field representation in various slabs are
matched at the boundaries inside modulated region.

5.4 Modal expansion methods

We next suppose that the diffractive element is divided into J layers that can be either
binary lamellar or index-modulated, but y invariant. We solve the field inside each layer
and thereafter use the boundary conditions at each surface z = z; to match the fields in
different layers. Thus the solution of the diffraction problem is divided into two distinct
problems: (1) solving the modes in each layer and (2) matching the boundary conditions.
The calculations in part (1) depend greatly on the chosen approach, while part (2) is
always simply a solution of a set of linear equations.

Let us first consider a single layer located between boundaries #; 2 0and 2.9 < A
The refractive index distribution inside this layer is supposed to be é{z). We malke the
separation of variables, U(x,z) = X(z)Z(z), where U = E, and U = Hy,in TE and T™M
polarizations, respectively. In TE polarization, this vields the equations

2
d_i_zx(x) + [kzér(m) - 72] X(z)=0 (5.18)

and \
El%Z(z) +9%Z(z) =0, (5.19)
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where <y is the separation constant. In TM polarization, the Eq. {5.19) remains unchanged,
but Eq. (5.18) must be replaced by

ér(m)&% [éﬁ%}f(m)] + [kzér(ﬂ)) - 72] X(z)=0. (5.20)

The solution of Eq. {5.19) is easily found to be
Z(z) = aexpiv(z — 2] + bexp [—in(z — 2] (5.21)

We will see that in the case of periodic elements, there exists a discrete set of solutions
Xm(z), which will be called modes. There exist different methods for solving these modes
and some of them will be introduced in the next subsections. We will consider only one
of the layers and omit the index j for the sake of notational simplicity.

5.4.1 Exact eigenmode method

The exact eigenmode method was introduced by Maystre and Petit [103] in the case of
a rectangular array of grooves in perfectly conducting material. Later this method was
extended to finitely conducting [104, 105], dielectric [106], multilevel (76}, and multiply
grooved lamellar gratings [107]. Also it is possible to analyze conically mounted gratings
with the exact eigenmode method {75,76]. Here we will assume non-conical mounting but
the grating may have an arbitrary lamellar structure.

In exact modal methods the refractive-index profile in the z direction must be such
that one can solve the mode functions X, {x) analytically. This is possible if the refractive
index is piecewise constant in z direction. We assume TE polarization (TM polarization
can be analyzed with slight modifications), a refractive index profile of the form #(z) = 7
when = < z < @rys, With 1 = 0 and w24, = d (d = grating period). The solution X;(z)
is then easily found in the {th block:

Xi(z) = Ayexplifi(z — z1)] + Brexpl—16i(x — z141)), (5.22)

where
(kig)® — if |y] < kfy
Gy = ;

5.23
7 — (kfy)?  otherwise (5:23)

One can determine the separation constant + by requiring that both X(w) and its deriva-
tive are continuous at each boundary z = 2y, and that the modes are pseudoperiodic
(see Section 5.2). Using these continuity conditions one obtains a matrix equation that
connects the amplitudes 4; and B, in two adjacent blocks:

1 exp(iﬁ'gdg) A[ _ exp(iﬁ;_ld;_l) 1 A,:..l } (5 24)
B —Brexp(ifd;) By Bi-1exp{ifi-1di) —Bi-z By |” '

where d; = 214 — m; is the width of the ith block. Due to the pseudoperiodicity, one also
requires that

1 exp(iﬁldl) Al _ . exp(iﬁLdL) 1 AL
[ﬁl —ﬁlexp(widl)][Bl]”e"p(’“ﬂd)[ﬁLexp(iﬁLdL) —,GL”BL]' (5.25)
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By combining these equations one obtains a matrix equation
. -1
exp(ifhdy) 1
Grexpl{ifidi) —5

xﬂ[ exp(ifidy) H exp(ifid)) 1 ]"*
B —Grexp(ifidy) Brexp(ifd:)

% [ 1 ehp(lﬁi_dl) ) } [ A ]

exp(iugd) [ gl ]
1

By =B exp(ifid, B,
= | Al) B(r) || A
= [ cly) D) ] [ B, } ‘ (5.26)
In order to have non-trivial solutions, it is required that
AMD(y) — B(7)C(7) — explivod} [A{y) + D(7)] + exp(i2uod) = 0, (5.27)

which is a transcendental equation for the allowed wvalues of . This equation has an
infinite but countable number of roots, which will be denoted v,,. Once these eigenvalues
have been found, one can solve the amplitudes A; and B; using Eqs. (5.24) and (5.25).
However, one of these remains undetermined. It can be fixed by normalizing the modes.

5.4.2 Legendre polynomial expansion method

The problem with the preceeding exact eigenmode method is that one must find zeroes
of the transcendental equation {3.27) in a complex plane, which may be difficult. In
order to avoid transcendental equation (5.27) one can approximate the exact modes using
different kinds of expansions. One example is introduced by Morf [108,109]. He expressed
the modes in Legendre and Chebyshev polynomials bases. The idea is, that since such
polynomials form a complete base in the interval [—1,1] {see, e.g., Ref. {110}, p. 652),
the modes can be represented in these bases. Here we will use Legendre polynomials
as base functions. The case with Chebyshev polynomials can be analyzed with slight
modifications.
Let us write the mode X;(z) in Ith block as

Xi(x Z PP (5.28)

m=0

where P,(£) is the mth Legendre polynomial, p!, are the polynomial coefficients of the
{th mode and g )
e B Y (5.29)
Ty — Iy
is a mapping from [z, 2;41] to the interval [—1,1]. If one truncates the sum to contain A/
polynomials, then the second derivative of the mode in the [th block can be written as

dZ M-2
X(2) = 3 bPa( (5.30)

m=>

da?




5.4 Modal expansion methods 27

where the coeflicients b,, are connected to the coefficients a,, as

1 M
b = (m—i- —) 3 (p+m+1){p-ma,. (5.31)
2 p=m+2,m-+4,...

In TE polarization, both the field and its derivative must be continuous across the
block boundaries. One therefore obtains

My Miyy
Do P = Y B (=1 (5.32)
=0 m=0
and
1 M Mg
— Z pfnm(m +1)=— pf,'fl(—l)m"';m(m + 1}, (5.33)
dl m=0 dH'l m=0

where d; = %141 — 21 is the width of [th block. Pseudoperiodicity requires that

Mg, M;
Y om = Y Dl =1)™ explinod) (5.34)
m=0 m=03
and
1 Mg 1 M
= 2 ppm{m+ 1} = 3 p(=1)" m{m + 1) exp{iud). (5.3)
L m=0 1 =0 k:

Thus one has 2L equations to eliminate the coefficients p);, and pj,_;. On combining
these results, one obtains a matrix equation for the eigenvalues v, and the corresponding
eigenvectors, which contain the polynomial coefficients pfn, m=0,...,M; -1 InTM
polarization one replaces all 1/d; in derivative terms by 1/{A?d;), because the continuous
function across the boundaries is the derivative of the field divided by #].
In numerical calculations it is necessary to truncate the sum of the polynomials, but |
the maximum number of polynomials can differ from block to block.

5.4.3 Fourier-expansion method

Since we are dealing with periodic elements, it is possible to express the permittivity dis-
tribution in the x direction in the form of a Fourier series. This method was introduced by
Burckhardt [111,112] and developed further by Kaspar {113], Knop [114], and Nyyssonen
and ICirk [102]. Also Tamir et al. used essentially the same methed in the analysis of a
sinusoidally modulated half-space [115,116].
Let us first assume TE polarization and write the relative permittivity of the grating
as a Fourier-series -
&(z) = > emexp(i2rma/d), {5.36)

m=—00
where
1 opd . i
Em = E/c; &{z) exp(—12mrma/d). {5.37)
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‘We look for a pseudoperiodic mode solution

o0
X{z)= > Pexplimz), (5.38)
I=—ca
where the coefficients P, are unknown. Inserting Eqs. (5.36} and (5.38) into the Eq. (5.18),
and using the orthonormality of the functions exp{ium) in the interval {0, d], one obtains

a matrix equation
MP = +*P, {5.39)

where the vector P contains the coefficients P, and M is a matrix with elements
My = k%€1_m = UZ,0im. (5.40)

Thus the mode eigenvalues 7, are the eigenvalues of the matrix M and the corresponding
eigenvector P, gives the polynomial coefficients Fip.

In TM polarization several formulations of the eigenvalue problem can be obtained,
which all are equivalent in principle, but differ greatly when one considers numerical
convergence. The most stable form is

N-Y(i2l - KE'K)P = +*P, (5.41)

where B = €1m, Kim = im, fim = Stms Nim = €—m, and § are the Fourier components
of the function 1/¢, [117-120].

One must truncate the matrices in numerical calculations in such a way that all prop-
agating modes and a sufficient number of evanescent modes are inciuded. The number of
eigenvalues needed depends on the period of the element, on the refractive indices, and
also on the state polarization.

5.4.4 Boundary conditions

After the solusion of the modes X,{z) inside the grating with one of the methods discussed
above, one has to determine the amplitudes a,, and by, in Eq. {5.21) using the boundary
conditions at each the boundaries z = ;. In TE polarization we require that both E,(z,2)
and its z-derivative are continuous across each boundary.

In regions 1 {z < 0) and 3 (z > h) the field is expressed in the form of Rayleigh-
expansions (5.9) and {5.6), respectively. The incident field is supposed to consist of either
a single plane wave or a combination of plane waves that propagate in directions exactly
opposite to those of the backward-diffracted orders. Thus the field in region 1 is expressed
in the form

oo feo]
Eya,2)= 3, Amexp[ilumz+ rmzl] + Y. Bmexp [{um® — rm2)], (5.42)
m=—co m=—co

where the coefficlents A,, are the (known)} amplitudes of the incident plane waves. In
region 3 we write

Bi(z,z) = i T xp {i [tim® + tm(z = A}]} . (5.43)

m=—0cQ
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Inside the gth grating layer we have the mode expansion

o0

Ei(x,2)= Y {ad,exp [ivd,(5 — 25)] + Bpexp [-ivh(z — )|} Xi(z). (549)

m=1

if we demand the continuity of both the field and its derivative across the boundaries
z =0 and z = h, we arrive at matrix equations

Io|[T PIE’ P’ a’
[f; 0 [R] = [PJI‘JEJ _PJI\JJ [ b ] (5.45)
and
o 1][fT], [10]]A P! PIE! al
[0 -r][R]+_r Q:H:g]_[:plrl “PlrlEl}[bl]' {5.46)

Here Imn. = Smn, tmn = tmbmns Tma = 7?m‘51._um Ei};m = eXp(i')"rjuhj)émna h_’f = Zjiy1 — 2
Tmn = ¥, 8mn, the elements of vectors @/, &, T, R, and A are the amplitudes af,, ¥,
T, B, and A,,, respectively, and

X . d
Pl = {expliun2)|Xi(2)) = 5 [ Xi(2) exp(~itma)do (5.47)

are the projections of the modes into the base formed by the diffracted orders. These
projections can be solved analytically in each modal method presented above.

Application of the boundary conditions at the surface between layers 7 and j+1 leads
to the matrix equation

PR 22 al pi+l PitlEi+ it
PINEF _PiTi || & | T | pitipin —pitipinigpi || piet |- (5.48)

Thus the vectors T and R can be obtained from the following set of linear equations:

ﬁ pi PR PEE P 17 [10]]T
1l | pipi —PIiDiEi || PITVE _PiTV t 0|l R

j=1

SIS D!

If we choose a finite number of base functions exp{iu,2z), this set of equations truncates to
a finite-size matrix equation. The main numerical problems in the solution of Eq. (5.49)
are related to instabilities in the invertion of the matrix
PiEi P
[ PINE —PITY ] : (5.50)
which can be avoided by recently introduced procedures [121].
In TM polarization one requires the continuity of the field and its normal derivative,
divided by permittivity, at each layer boundary. This only results in minor modifications
of the formalism presented above.
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5.4.5 Comparison of modal methods

Having introduced three different modal methods, we feel the need to address their useful-
ness in different geometries, knowing that this can be a matter of opinion to some extent.
The exact-eigenmode and Legendre-polynomial-expansion methods are most suitable for
highly conducting lamellar gratings. Because of the assumption that the refractive index
is constant in each block, they are not directly applicable to the analysis of continuous
index-modulated gratings, even though one can approximate such structures by dividing
the grating period into thin blocks with constant permittivity.

The problem with the exact mode representation occurs when the mode decays ex-
ponentially. Then the numerical rounding errors may grow exponentially and thus make
solutions of modes badly inaccurate. This happens especially when the width of a single
block is much larger than the wavelength. However, this can be at least partially avoided
by dividing the blocks into smaller parts. Moreover, it is a rather demanding task to find
the zeroes of Eq. (5.27}, at least if some of the blocks have complex refractive indices
7y (in that case one has to locate zeroes in the complex plane). Nevertheless, there ex-
ist methods to find the roots, see e.g., Refs. [107,122]. For the computations, one can
include only a finite number of modes. Then one must find those eigenvalues that have
a modulus less than some constant Ymae, which must be chosen in such a way that it is
greater than kmax(|7|). Essentially, then one must find all eigenvalues inside a circle
of this radius in the complex plane. One might first look for an approximative solution
using either the Legendre polynomial expansion or the Fourier expansion method. Once
such approximations have been found, one can use some optimization method to find the
exact values.

With the Legendre polynomial method, the eigenvalues corresponding to the Jowest-
order modes converge rapidly, but the highest-order eigenvalues remain rather inaccuarate:
the number of sufficiently precise eigenvalues is typically only about one third of the total
number of modes evaluated numerically. Therefore one must somehow choose the correct
eigenvalues and neglect those that are inaccurate. Another problem is that the projections
into the base exp(iun,z) contain Bessel functions, which usually cannot be evaluated as
rapidly as the sinusoidal and cosinusoidal functions used in the exact mode methods.

The Fourier expansion method works best in the analysis of continuously index-
modulated structures. With lamellar gratings, the permittivity distribution contains
discontinuities, which makes the Fourier-series representation of the refractive-index dis-
tribution converge relatively slowly. Consequently the convergence of the lowest-order-
eigenvalues is not as rapid as it is in the Legendre-polynomial expansion method. How-
ever, the eigenvalues associated with the highest modes are more accurate; all calculated
eigenvalues and eigenvectors can be included in further computations. In spite of these
considerations, the Fourier expansion method should be highly appreciated as it appears
to be by far the easiest rigorous analysis method to implement numerically.

5.5 Rigorous coupled-wave analysis

Probably the most popular method to solve grating diffraction problems is the Rigor-
ous Coupled-Wave Analysis (RCWA). The approach is slightly different from the modal
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methods represented above, but it leads to the same numerical implementation as the
Fourier-expansion method. The RCWA method was originally developed by Moharam
and Gaylord {123] for planar volume gratings. One can find a good review of RCWA in
Ref. [84]. The method has been generalized to surface relief gratings {124], 3D geome-
tries {79,81], anisotropic gratings [125], etc.

First, let us assume TE polarization. The field outside the grating is given by Eqs. (5.9)
and (5.6). Inside the modulated region, we start from the Helmholtz equation (2.20).
Inside jth layer, located between z; < z < z;41, the relative permittivity &{x) is assurned
z-invariant and pseudoperiodic. Instead of the separation of variables, we apply the
ansatz [77]

Sl .
Eiz,2) = > S5{(z)exp(~iwz), (5.51)

{=—00

where S7(z) is the normalized amplitude of the ith space-harmonic field, 1w = up+2wm/d,
and uy = kn, sin# as before. The permittivity &.(x) is represented as a Fourier series

&(z) = i £ exp(i2mpz/d). (5.52)

p=—c0

Substitution Egs. (5.51) and (5.52) into Eq. (2.20) yields the equation

d*§7(z) i
where the matrix A7 has the elements
AJ:np = Gmbmp — kzs'in—p {5.54)

and the vector $7({z) contains the amplitudes 57 (z). The solution of Eq. (5.53) is
. el . . + . .
Si(z) = Y Pl {ad e [z — 2)] + bhexp vz — 2]}, (5:59)
m=1

where v, are the positive square-roots of the eigenvalues of the matrix A and Pﬂ,'n are
the elements of the corresponding eigenvectors. The coefficients of, and b, are solved
using the boundary conditions. Thus the field inside the grating is similar to the field
representation in the Fourier-expansion eigenmode method. The solution of the boundary
conditions is equivalent to that already presenied in Section 5.4.4.

In TM polarization, a similar procedure leads to the solution

Hi{z,z) = f U z) exp(iugz), (5.56)
e ]
where -
Ui(z) = 3 P, {ad exp—m(z — 2] + by explim(z — zima)]}, (557

me=l
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P} and vl, are now the eigenvectors and the eigenvalues of the matrix
B = (C/)"! [K(B) 'K -1, (5.58)

El, = Sm-ps Chp = &, and &, are the Fourier-coefficient of the function 1/&(x),
Komp = Umbmp, and I is the identity matrix [119,120].

Although RCWA is completely analogous to the Fourier-expansion modal method,
one may find the former somewhat more intuitive, in particular when deriving various
approximative methods for volume gratings [84]. In coupled-wave theory, the coupling
between the diffraction orders appears to be due to the space-harmonics of the permittivity
profile while in the modal method this coupling seems occur between the modes. However,

this difference only takes place because of the way of choosing the ansatz.

5.6 Space-domain methods

The space-domain methods can be divided into two different categories: differential and
integral methods [2]. In differential methods, the diffracted fields are obtained by inte-
grating numerically the field equations over the grating volume. An example of differential
methods [78] is the finite element method (FEM) [126,127]. The main problem with FEM
is that one is typically lead to handle very large matrices. This is because the distance
hetween neighboring grid points must be of the order of A/10 or less.

In integral methods [101,128], the field is represented as an integral of some unknown
function over a surface that separates two homogeneous materials. The diffracted field
is then obtained by solving an integral equation formed by using the Helmholtz equation
and boundary conditions. Numerical implementation of integral methods can be rather
difficult, but when properly implemented these methods can be very stable. The weakness
of integral methods is that they can not be applied to index-modulated gratings.

It is also possible o use a volume integration method [129,130], in which the field is
integrated over the grating volume. Using the Helmholtz equation and the appropriate
boundary conditions one obtains an integral equation for the diffracted fields which is
solved numerically in a suitable grid that divides the volume into cells with an approxi-
mately constant field.




Chapter 6

Diffraction analysis: continuous signals

6.1 Introduction

In Chapter 5 we assumed that the diffractive element and the incident electromagnetic
field are both pseudoperiodic, i.e., infinite. As a consequence, the outgoing fields are
discrete superpositions of plane waves that propagate in different directions. Thus the
far-field pattern is a set of discrete points with some relative intensities, given by the
diffraction efficiencies of the diffraction orders. However, this situation is rather unphys-
ical, since it implies, e.g., that the energy of the incident field is infinite.

If continuous far-field signals are required, one is forced to use either non-periodic
diffractive elements or a finite illumination wave. In this Chapter we will consider three
different kinds of systems. Firstly, we discuss finite diffractive elements with perfectly con-
ducting aperture boundaries; the incident field may be either finite or infinite. The reason
for the introduction of perfectly conducting boundaries is that then the spectrum of the
mode eigenvalues necessarily becomes discrete. Secondly, we illuminate an infinite grating
with a finite field, e.g., a Gaussian beam with its tails cut off. Since the illumination wave
is finite, we can use methods developed for infinite periodic elements in the calculations.
Finally, It is also possible to analyze diffraction of spatially partially coherent incident
waves using the coherent-mode decomposition of the incident field (Section 4.5).

Here the analysis is performed by modal methods. It is also possible to use different
space-domain methods in the analysis of non-periodic systems, including FEM [126] and
the volume integral method [129].

6.2 Eigenmode method for modulated apertures

We will examine diffraction from an aperture, in which the refractive index distribution
is piecewise constant (see Fig. 6.1). This is an extension of the analysis of unmodulated
apertures [131] and grooves in a perfectly conducting surface [132]. The field inside
the element can be solved using the exact eigenmode method introduced Section 5.4.1.
We agsume a single-layer lamellar structure inside the aperture, but the method can be
generalized to multilevel profiles.

6.2.1 Exact eigenmodes

We suppose that the (possible complex-valued) refractive-index distribution is of the form

A{z) = fiy when @ <z < T4, (6.1)
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Fig. 6.1: Geometry of an index-modulated aperture in a perfectly conducting screen.

where z; = 0 and %74, = ¢. As in Section 5.4.1 one can express the field in fth block,
T < 2 < Zpy, as [133]

Ul(,2) = Xi(w) {aexp(ivz) + bexp [—iv(z — B} , (6.2)
where
Xg(af) = Ag exp Il,@[(‘l. b 1:1)] + B[ exXp [“]5}(33 - x,)] (63)
and G is given by Eq. (5.23).
At each intermediate boundary m,, ..., 2z, the field and either its derivative (in TE

polarization) or the derivative divided by A7 (in TM polarization) must be continuous.
QOutside the aperture, and therefore also at the aperture boundaries # = 0 and z = ¢,
either the field (in TE polarization) or its derivative (in TM polarization) must vanish.
Let us consider only TM-polarization and introduce a new function

Xi(z) = ——Xi(2). (6.4)

In region #; < 2 < 141, one can solve the amplitudes A; and B; in terms of X;(z;) and
Xi(z;). Thus one obtains

[l | =nmcn | 650 -

where

Mi(y) = [ cos [Bi(are1 — @) (7 /B8y) sin [B(zipr — )] } ) (6.6)

~(B/)sin [Bi@ias —21)] 008 [Bilwir — o))

One can now recursively connect the values of X(z) and X(z)} at x = 0 to those at z = ¢
using the fact that these quantities are both continuous across the boundaries x = ;. We

obtain
Xile) | _ X1 (0)
[ X4 (c) ] =M{) [ X.(0) ] : ©.7)
where

_T _[ A B
M(')’) = EIVIL—HI('Y) = [ ciy) D) ] - (6.8)
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Since E(z,z) must vanish at the perfectly conducting aperture boundaries, X;(0) =
Xi{c) =10, and thus
Cly) =0. (6.9)

This equation is transcendental and the solutions may be hard to find. Once the eigen-
values 7y, of the modes have been found, one can recursively solve the values Xj(z;) and
Xi(x;) and then the modal function Xn(z).

In TE polarization, all explicit A,:s must be removed from the matrices A;(7), and the
field E, must vanish at the boundaries, which leads to an eigenvalue equation B{v) = C.

6.2.2 Polynomial expansion of the modes

In the numerical solution of Eq. {6.9) one may miss some of the eigenvalues ~, unless
the search is performed carefully. However, it is possible to use the Legendre polynomial
expansion of the modes as in Section 5.4.2. With this method, all the lowest-order eigen-
values will always be found. Since the eigenvalues found by the polynomial expansion
method are not exact, one can refine them with the aid of Eq. (6.9).

The Legendre polynomial expansion of the modes in the Ith block is expressed in
Eq. (5.28). Similarly to Section 5.4.2, one can now eliminate coefficients p}y, and ph,_,.
But instead of the pseudoperiodicity, we require that either (in TE polarization)

My My,
Yo" =3 ph=0 (6.10)
m=0 =0
or (in TM polarization)
1 My ) 1 My, L
EW > (=1 mm+ 1) = E > pmm{m+1) =0. (6.11)
m=0 m=()

With these modifications, one can form a matrix equation almost similar to that in Sec-
tion 5.4.2, which can be solved for the eigenvalues 4,, and corresponding polynomial
coefficients pl,. Once the eigenvalues and the polynomial coefficients are found, one is
able to construct the modes.

6.2.3 Boundary conditions

Having solved the eigenmodes of the modulated aperture, we use the boundary conditions
at z =0 and z = h to determine the reflected and the transmitted field. Let us consider
TE polarization. One writes the incident, the reflected and the transmitted fields using
their angular spectrum representations, i.e.,

) n1/A
EMz,z) = f_m” Ale) exp {i2n [ez + r(a)z]} da, (6.12)
Ei(z,z) = [_: R(o) exp {i27 [z — r{a)z]} de, (6.13)
E(z,2) = f_o; T(o) exp {i2n [az + t{a)(z — 2)]} da, (6.14)
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where
2@ if < A
ra) = ¢ VAP = el S n/ (6.15)
iyJa? — (n1/A)? otherwise
and

2 a2 3 <
Ha)=1{ {na/A)? —a? if o < na/A (6.16)
iy/a? — (ng/A)? otherwise.

We also assumed that the incident fleld arrives from (minus) infinity, and therefore pos-
sesses no evanescent components. The integration limits —ny /A and ny/A in Eq. (6.12)
can be replaced by —oo and co by defining the angular spectrum of the incident field
A(a) to be zero outside the interval [—ni/A,n1/A]. The angular spectra R{a) and T{«)
are the two unknown functions to be solved.

Inside the aperture, the field is represented by Eq. {6.2). The boundary conditions
require that both E, and 9E,/z are continuous inside the aperture and that £, vanishes
outside the aperture. Thus we obtain a set equations [133]

[
8

]_w [A{a) + R(a)] expl(iZraz)de X2} [ + b exp(iymh)],  (6.17)

3
I

4

gk

mdZ)¥m [@m — bm exp(iymh)], (6.18)

I

2 fo:o r{a}[A{a) - R(a)] exp(i2raz)da =

E]
I\

I
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f_: T(a) exp(izraz)de Xon{z) [am explivmh) + bw],  (6.19)

E]
n

Koo ()Y [ €XD (Fymh) — b, (6.20)

8

2% fm tHa)T(a) exp(i2raz)da =

-0

3
i

which can be solved in at least two different ways. Firstly, one can discretize the angular
spectra, 1.2, let Ala} — A; = A(x) and so on. If the difference between the points oy
and o) is constant, the element acts like a periodic array of index-modulated apertures
separated by perfectly conducéing screen sections. The period increases when the sam-
pling distance is reduced. The solution of this system is thus reduced to the analysis
of grating diffraction. If the separation between the points is not constant, the physical
interpretation is less clear.

The second method to solve Egs. (6.17)-(6.20) proceeds as follows. We multiply
Eqs. (6.17) and (6.19) by exp(—i2xaz), and then integrate x from —oo to oo to obtain

A@+R@) = 3 In(a)lom + bnexp(iBnh)], (6.21)
T(a) = 3 In(a) [am exp(iBmh) + ba], (6.22)

m=1

where (note that the mode vanishes outside the aperiure)

In{o) = [_o:ox wlz) exp{—i2rax)dz. {6.23)
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QOne can now substitute the functions R{a) and T(«) into Egs (6.18) and {6.20), multiply
them by X;(m) and integrate x from 0 to ¢. This ylelds a doubly infinite system of linsar
equations:

Z (Epm + 1mCimbpm)om + Z (Kpm — YmCrmbpm) exp(ivmh)bm = 47 foo II;(O")A(Q)da7
m=1 m=1 e
(6.24)
fore) o
Z (me - 'Ymcmé-pm) exp(ivmh)am + Z (LP”“‘ + ’ymcméf'm)bm =0, (6.25)
m==l m=1
where
OO
Kpm = 27 f r(@)I3{a)In(a)da, (6.26)
Lym = 2r f " Ha) I (@) Ln(e)dar, (6.27)
-0
and <
m = Xm : 2 x, .
c /0 | X ()2 (6.28)

Once the amplitudes a,, and by have been solved, one can calculate the angular spectra
of the reflected and transmitted fields, R(a) and T(«), from Eqgs. (6.21) and (6.22). In
T'M polarization, one must slightly modify the preceding derivation.

The most serions numerical problem in this method is the calculation of the matrix
elements Kpm and Lpy,. In general, these integrals must be evaluated numerically, which
is rather time consuming.

The most convenient quantity for the description of the energy of the transmitted and
the refracted field is the radiant intensity. Since the field is assumed to be completely
coherent, the radiant intensities of the diffracted fields are

JHG) = (n‘* ?39)2 }T (”3 fne) r (6.29)
J(0) = (”‘ C)i’sg)z ’R (”‘ 5;“9)12, (6.30)

where ¢ is the angle hetween the z-axis and the direction of the observation point. For
comparison, the radiant intensity of the incident field without the aperture is

2 - 2
Jn(g) = (”1 CAOSB) A (”15;“9); . (6.31)

6.3 Periodic elements with finite incident beam

In Chapter 5 we solved the grating diffraction problem assuming that the incident beam
is either a plane wave or a superposition of plane waves that propagate in the directions
exactly opposite to reflected diffraction orders. Here we generalize the discussion to the
case of an incident beam with a continuous angular spectrum.




38 6 Diffraction analysis: continuous signals

We consider an arbitrary grating of period d and write the incident field as

. 2afn M
Ey(x,z) = fo ! > Amf{uo) exp{ifum(uo)t + rmug)z] Jdug, {6.32)
m=—7

where Ap{up) = A(un/27) = A(ug/27 + m/d), up = knysiné, and the summation
contains only the homogeneous waves. In Eq. (6.32) we scan uy over the angular range
between two adjacent diffraction orders, solve the diffraction problem for each incident
angle &, and superimpose the results coherenily. The required density of sampling points
depends on the complexity of A{e). In some cases, particularly when d 3> A, as few as
~ 10 sampling points may be adequate for accurate results. This means that one needs
to solve the grating diffraction problem only for those ~ 10 incident angles.

A non-periodic diffractive structure illuminated by a finite beam can be analyzed
accurately with the aid of the above-described method. One replaces the element by
a grating, which repeats itself only outside the regicn in which the incident field has a
non-negligible amplitude. The choice of the grating period d depends on the diffractive
structure and it must be tested by observing the convergence of the outgoing fields when
d is increased. The advantage of the present approach over the exact treatment of non-
periodic structures is computational efficiency. The numerical integrations required in
the analysis of non-periodic elements are typically more time-consurning than the angular
scan in grating theory.

6.4 Diffraction of spatially partially coherent fields

In both grating-diffraction analysis and the analysis of non-periodic elements we have
assumed that the incident field is spatially completely coherent.

If the llumination is spatially partially coherent, the diffraction problem can be solved
elegantly by application of the coherent mode decomposition of the incident field [134],
introduced in Section 4.5. The angular correlation function of the incident field can then
be written as

AP, 05) = 3 cuy () Anfe), (6:39)

where the coherent modes A.{a) and the weights ¢, can be found by solving Eq. (4.27).
Since the functions A,{a) are spatially fully coherent, one can now solve the diffraction
problem for each of them separately, with methods introduced above. The angular spectra
of the forward- and backward-diffracted fields corresponding to the mode A4,(c} are de-
noted by T, (a) and R,(«), respectively. The angular correlation functions of the partially
coherent forward- and backward-diffracted fields are now

Ay, ) = ichf:(al)Tn(aﬂv

a0

A"(al,ag) = icnR;(al)Rn(ag). (634)

n=0

The energy carried into the far-zone by the diffracted fields is described by the radiant
intensity, given by Eq. (4.24).




Chapter 7

Approximate methods

The main problem with the rigorous methods presented in Chapters 5 and 6 is that
they usually require heavy computations: if ejther the grating period or the aperture
of a non-periodic element is much larger than the wavelength, one needs to solve large
eigenvalue and boundary problems. Even more serious problems are encountered in three-
dimensional geometries. Whenever possible, one therefore prefers approximate methods
over rigorous ones. Here we consider two approximate methods: thin element approx-
imation and first-order two-wave coupled-wave theory. Several other methods such as
Raman-Nath theory [135-138] and effective medium theory [62,139,140), exist.

7.1 Thin element approximation
Let us suppose that the refractive index distribution of the element is
iz, y, 2) =n{z,y, 2) + islz, y, 2), {7.1)

where n is the real refractive index and x describes the absorption of the material. Then,
calculating the optical path {3], one obtains a relationship between the incident field
U(z,y,0) and the transmitted field I/*(z, y, ) in the form

Uz, y, b) = t(z, ) U™ (2, ,0), (7.2)

where
t(.‘l’:, y) = Az, y) exp [;(I)(f.::, y)] (7.3)

is known as the complex-amplitude transmission function. In Eq. {7.3)

k
Alz,y) =exp [—kfo n(m,y,z)dz] (7.4)

and .
e,y) =k [ nlw,v,2)dz (7.5)

are the amplitude and phase transmittance functions, respectively. If x = 0, the material
is dielectric and the element modulates only the phase of the incident field. It is appropri-
ate to note that although the thin-element approximation is rather good when the smallest
feature size of the element is at least an order of a magnitude greater than the wavelength,
it can fail dramatically when the feature size is reduced: see, e.g., Refs. {2,141-144].




40 7 Approximate methods

Let us assume that the element is a grating with periods d, and d,, in 2 and y directions,
respectively, and that it is illuminated by a unit-amplitude plane wave U™ (z,y,2) = 1.
Then the amplitudes of the diffracted orders are

- 1 pde pdy ) _
mn_d;dyfu /0 t{e, y) exp [—i2n{ma/d, -+ ny/d,)] dzdy. (7.6)

In the case of non-periodic elements, the angular spectrum is obtained by calculating the
Fourier transform of the diffracted field at z = h:

T(c,8) = [[ Ho,y)U" (2, 3,0) exp [i2m(ow + By)] dady, (7.7)

where A is the aperture of the element. Since the diffracted field is paraxial, its radiant
intensity is proportional to |T'(a, B8}|%.

The complex-amplitude transmittance method can also be used when the incident field
is spatially partially coherent, with cross-spectral density function W (xy, 111, 21, Tz, U2, 22 ),
where we have omitted the frequency dependence. Then the cross-spectral density func-
tion of the transmitted field at the plane z = h is

Wt(mla Y1, h,a"}z, Yz, h) = t*(mlnyl)t(mﬁsyZ)I’Vin(xlayls 0: T2, Y2, 0)' (7'8)

7.2 First-order two-wave coupled-wave theory
Consider a cosinusoidal permittivity distribution
€, 2) = &, + Ae, cos(2mz/d). (7.9

Neglecting the second derivatives in RCWA (Section 5.5) and assuming that only two
propagating orders, m = 0 and m = ~1, exist, one can obtain analytic expressions for
their space-harmonic amplitudes [84,145]:

R e i
S_1(z) = 1exp(—igz/2s) \/(1 ) (7.10)
and
. isin {v/g7+ 47%(2/25)]
So(z) = exp(—igz/2s) {cos [1/92 + 4f2(z/2s)] + \/1 T ey } . (71
Here
g = 2rm/d){up+m/d), (7.12)
f = (x/3FAe,, (7.13)
s = ke, cosd, (7.14)

and ¢ = arcsin [(nl /+/€) sin 9] is the refraction angle of the incident wave inside the
grating when Ae, = 0.
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Tf the incident beam arrives at the Bragg angle
#g = arcsin{ \/2n,d), (7.15)

and if ng = n; = /&, one obtains

. (7.16)

N1 = |S_1{h)l2 = gin® ( wieqh )

2,/e-Acost

Thus it is possible to archive 100% diffraction efficiency, -, = 100%, if the grating
parameters satisfies the condition

Tdeh 7 717
2\/§A0089w§+mr' (7.17)

Tt is convenient to characterize the validity range of the first-order two-wave coupled-
wave approximation using the Klein-Cook parameter [146] Q = 4m?h/kd* and the Raman-
Nath parameter [135] v = khAe,. The two-wave approximation is rather accurate if
0> 1and Q/v > 1[84,99,100,147].




Chapter 8

Design of diffractive elements

8.1 Design freedoms

The basic design geometry in diffractive optics is shown in Fig. 8.1. An incident electro-
magnetic field {E"(r,t), H™(r,t)} arrives from z = —oo. With the aid of an element
at z = 0, one wants to generate some signal function s[E(r,t), H(r,t)] inside the sig-
nal window W. There may exist an entire family of fields {E*(»,¢), H'(r, t)}, which ail
generate the required signal s. On the other hand, the design task may be impossible be-
cause the field must satisfy Maxwell's equations (2.3)-{2.6). Also fabrication constraints
may limit the set of possible optical elements. Thus, instead of the exact signal field
{E*(r,t), H(r,t)}, one typically obtains a diffracted field {E%(r,t), H 4(r 1)}, which is
approximately equal to the signal in W. Therefore one also has to investigate the signal
error

s[B*(r,t), H*(r,t)] = s[E*(r, t), H3(r,t)] — s[BY(r, t),Hd(r,t)]. (8.1)

Fortunately, in most cases only some properties of the signal field need to be fixed.
For example, one may define the signal as a distribution of the electric energy density,
leaving other properties of the field in W arbitrary. Finally, the entire field outside the
signal window can be arbitrary (this is known as the amplitude freedom). In general, all
unfixed properties of the field are called design freedoms (148]. These freedoms can be
used, e.g., to maximize the diffraction efficiency of the element.

=0

Fig. 8.1: Geometry of design problem.
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8.2 Upper bound of the diffraction efficiency

Consider a thin element {Section 7.1} between the planes z = 0 and z = A, illuminated
by a scalar field " (z, y, ). The signal is the intensity distribution of the field inside W,
located at z = z;, and the signal field is denoted by U*(z,y. z). We assume Us{x,y, z) =
0 outside W and U®(x,y,%) = 0 outside .A. Then the efficiency of an element that
modulates the complex amplitude of the incident field in exactly the required fashion, is

_ 1 f[4 U=, y, h)|*dady
T a? Iia |Ui2 (2, g, 0)|2dedy’

(8.2)

where o »)
x4, h
O = INaxX —-o——r.
raea |Un(z, v, 0)|
This result is based on the complex-amplitude transmittance method.
Next we assume a phase-only Fourler-element with amplitude freedom. Then the

upper bound of the efficiency is [149, 150]

(8.3)

(1755, U (9, 0)[|U (2., 1)} cos [Ad(z, )] dedy]”
ff—oooo |U’"(T:y;0)12d$dyfff°m |Ug($,'l ,h)%zdﬂ,‘d'y !

(8-4)

where
Adla,y) = arg [U(z,y, h)] — arg [Ug{z, y, 1)) . (8.5)

is the phase difference between the signal field without noise, Uj(z,y, h), and the signal
field with noise allowed, U3z, y, h).

Using Eqgs. (8.2) and (8.4), one can optimize the phase of the signal field to obtain
a maximum diffraction efficiency [151,152]). Remarkably, it is not necessary to actually
design any diffractive element for this purpose. Once the phase of the signal field has
been determined, one can calculate the complex-amplitude transmittance function of the
element using Eq. (7.2).

8.3 Design methods

In ray optics, one can design diffractive elements to deflect rays into desired directions
with the aid of Eqs. (5.4) and (5.5}, which determine the local period of the element [153].
‘Thus one can design, e.g., optical map transform elements [154-157).

In the paraxial domain, the incident field is described by a single scalar function and
the thin element approximation is employed. Three different types of methods exist:
direct, indirect and iterative. In direct design, one optimizes the structure of the ele-
ment to generate a desired signal using, e.g., direct binary search [158] with simulated
annealing [159]. It is also possible to optimize analytically the phase functions of certain
diffractive elements using variational methods [160, 161].

In indirect design, one propagates the signal field to the element plane. Then the
complex-amplitude transmittance function of the element is obtained using Eq. (7.2). If
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Fig. 8.2: Iterative Fourier-Transform algorithm for spatially partially coherent light.

the complex-amplitude transmittance function is unrealizable, one can use the design
freedoms to optimize the signal field.

In iterative methods, the satisfaction of certain constraints is demanded both at the
signal plane and at the element plane. Several iterative methods, such as Iterative Fourier
transform algorithm (IFTA) [162-167], Yang-Gu algorithm [168, 169], and Fresnel ping-
pong algorithm [170], exist. If rigorous theory is used, only direct design methods are
applicable because the inverse diffraction problem can not be solved [141,171].

8.4 IFTA for spatially partially coherent light

We proceed to extend IFTA to spatially partially coherent scalar fields. The algorithm is
introduced in Fig. 8.2. The propagation of the cross-spectral density function from the
element plane z = h to the signal plane z = z, is denoted by the operator P and governed
by Eq. (4.20).

At the first step, one constructs a cross-spectral density function that satisfies the
signal constraints at z = z,. This function is propagated to the plane z = h using the
operator P~'. Then the element-plane constraints are applied. Using operator P, the
cross-spectral density function is propagated back to the signal plane z = 2. If the
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signal is obtained with acceptable accuracy, the algorithm is stopped. Otherwise, the
cross-spectral density function is deformed as little as possible to fulfill the signal plane
constraints. This procedure is continued until the required signal is obtained or until the
iteration stagnates.

Since P and P! can he evaluated by applying the FFT algorithm (Section 3.1},
this method is called the iterative Fourier transform algorithm. If a 3D geometry is
concerned, 4D FFT is required in the partially coherent case. However, if the fields
are assumed completely coherent, the algorithm separates into two identical completely
coherent IFTA [165-167]. The quantization of the element can be carried out iteratively
as in completely coherent IFTA [172],

Let us consider reshaping of a uniform-intensity Schell-model field

W2y, 32,0) = exp [—{@1 — 22)*/207] (8.6)
into a far-field flat-top distribution
Ao, 0, h) = Ay = 1/{@max — Cmin), (8.7)
when apn < o < tpax. The following design freedoms are avatlable:

1. The angular degree of coherence inside the signal window may be arbitrary (coher-
ence freedom).

2. The entire anguiar correlation function outside the signal window may be arbitrary
(amplitude freedom).

3. The angular self-correlation function A{a,«)} needs to be only proportional to Ag
(scale freedom).

The element is inside an opaque aperture of width e. The diffractive element is a phase-
only element with a continuous phase profile.

We look for the cross-spectral density function W3{z, z,, k). The iteration is started
by taking a random initial distribution of the complex degree of coherence inside the
signal window, v*{c, o), and forming the signal angular correlation function

Aan, @) =/ A3(as, 1) A3(a, an)r{a, ). (8.8)

The complex-amplitude transmittance function of the element in each iteration & £ K,
where K is the total number of iterations, is chosen to be #;(z) = exp [ige(2)] = T(z,0),
where

Ti(@1, 22) = Ti(wr, 22) /| Tilmr, 321, (8.9)

and

Ti(zy, 20) = W(z1, 22, )/ W™ (21, 22, 0). (8.10)

The first K; iteration are performed with only coherence freedom. This was found to
improve the final efficiency. Next K iterations are done by aliowing also the amplitude
freedom. Finally, Kj iterations with all design freedoms are performed.
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Fig. 8.3: {a) Required phase function of the element. (b) The normalized anguiar
self-correlation function A(a, )/Ag.

Figure 8.3a illustrates the phase function obtained when ¢ = 2 mm, ¢, = 0.4 mm,
Qmax = —Omip == 7879, A = 514 nm, K, = 10, K; = 10, and K3 = 5. Figure. 8.3b
shows the corresponding angular self-correlation function A(x, «)/A4p and Fig. 8.4 shows
the modulus of the angular correlation function inside the signal window.

Although only 25 iterations are needed, the design process is rather slow compared
to the design of a corresponding element for coherent light. This is because here one
pust Fourier transform 2D matrices instead of 1D arrays. The uniformity error of the
preceeding flat-top distribution is as large as ~ 10% even though a continuous phase-
profile was allowed. It may be possible to obtain better results by choosing the initial
angular correlation function properly, so that the signal wave would be bandlimitted
within the aperture of the element [173].

However, this has not been attempted in the case of spatially partially coherent light.
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Fig. 8.4: Modulus of the angular correlation function (e, «z) inside the signal window.

8.5 Non-paraxial Gaussian to flat-top beam shaping

Elements, that reshape an incident Gaussian beam of width w into a field with a flat-
{op radiant intensity distribution, as illustrated in Fig. 8.5a, are required frequently in
& many technical applications [56]. If the flai-top opening angle ) is small, one can use
paraxial design methods. However, with wide opening angles such paraxial designs fail
and rigorous design methods are required.

Since both the incident field and the signal field are symmetric, the structure of the
diffractive element is also chosen to be symmetric. The structure is described using the
set of parameters {z;, iy} defined in Fig. 8.5b. In this example, the design is started from
a1l — 5 array illuminator of period d, with |73.% equal for |m| < 5. The element is
illuminated by a Gaussian beam of width w ~ v21n2d/x.

Using paraxial direct design, the set {z, iy} is optimized to produce a uniform radiant
intensity distribution |T(a)|* over the range |a| < 5/d. The optimal parameters are found
to be

{z1,...,2a} = {0.173d,0.289d,0.366d,0.446d}, (8.11)
{hy,...,ha} = {0.56),0.66),1.03\, L.77A}, (8.12)

]

and w = 0.38d. The element is then analyzed rigorously using the methods introduced
in Chapter 6. The radiant intensities with opening angles = 15.4°, Q = 23.0°, and
1 = 47.2°, corresponding the periods d = 15X, d = 10X and d = 5\ are shown in Fig. 8.6,
where we have normalized J*(0) = 1.

The d = 5 element is further optimized using rigorous direct optimization. The




48

8 Design of diffractive elements

(&)
0
z
{b)
hix)
hy I
0 XI1 X; X4 di2 x

Fig. 8.5: Geometry of Gaussian to flattop-element.
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Fig. 8.6: Radiant intensity of the flattop element with different opening angle of
signal O Solid line: 2 = 47.2°. Dashed line: 2 = 23.0°. Dotted line; £ = 15.4°.
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Fig. 8.7: Bffect of the lateral positioning error in the signal Adelity of the Gaussian
to flattop element. Solid line: no error. Dashed line: positioning error 0.02). Dotted
line: positioning error 0.04\.

refined parameters are

{zy,...,23} = {0.173d,0.366d,0.446d}, (8.13)
{hay.. . hs} = {0.57,0.87X,1.407}, (8.14)

il

and w = 0.38d. The corresponding radiant intensity is shown in Fig. 8.7 (solid line). In
Tig. 8.7, the effect of lateral position error of the element is illustrated, demonstrating high
sensitivity. In Ref. [56], experimental demonstration of a rigorously designed Gaussian to
flat-top element in the non-paraxial region is reported. Elements of this type would he
extremely useful as line-focus generators, but the sensitivity to positioning errors limits
their use.




Chapter 9

Coherence and diffraction

In this Chapter we investigate how diffraction changes the coherence properties of the
electromagnetic field. The most familiar way to reduce coherence is the use of a rotating
diffuser [174-176]. Alternatively one can employ an acousto-optic device, in which an
acoustic pressure wave in a liquid or solid-state material forms a moving grating [177-182].
Here we introduce another method to realize a moving grating: the grating vibrator.

On the other hand, diffraction can improve the coherence properties of the field even
in a homogeneous medium, as predicted by the Van Cittert-Zernike theorem [63]. Here
we investigate how the spatial coherence properties of the field can be improved using the
angular selectivity of a volume grating.

9.1 Grating vibrator

The geometry of a grating vibrator is illustrated in Fig. 9.1: the transducer P, which can
be, e.g., a piezoelectric device, moves the grating periodically. We assume that the grating
can be analyzed using the complex-amplitude transmittance method (Section 7.1). The
complex-amplitude transmittance function is now time-dependent:

Hof) = 3> Thexpligeme + Az(d)]/d}, (9.)
=
Ty = fo #(z, 0) exp(~i2rma/d)dz (9.2)
G

]

i
/

N
Fig. 9.1: Geometry of a grating vibrator.

P
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and Ag(#) is the grating displacement, which is a periodic function of period T, ie.,
Az(t 4+ T) = Ax(f). The incident spatially coherent field is assumed to be U{z,t) =
Ulx) exp(—iwpt}). The cross-correlation function behind the grating is

Tylzn, 22, 7) = (U2, 08 e, ) U (e, + T (T, t + 7)) (9.3)

o0

V@)U S S T0T exp[—i2n(ma; — nas)/d]

TG0 TR — 00

If

T
x exp{—iwg7) Jm % f-’r exp {127 [mAx(t) — nAz(t + 7)] /d} dt.

In some impartaat cases it is possible to evaluate the integral in Eq. (9.3) analyti-
cally. Let us assume that Axz(t) = asin(¢/T") with a = constant. With the aid of the
identity [110]

exp(ipsin 3) = Z Jy(p) explip), (9.4)

P00

where J, is the Bessel function of the first kind, we obtain

D(zy,x0,7) = U'(z))U Z Z T T exp [—i2x(maz; — nzs)/d]
m——oon——oo
% exp(—iwer) 3. Jplpm)Jp(on) exp{—ipr/T), (9.5)
p=—co

where pm, = 2xma/d. The cross-spectral density function at the exit plane of the element
is
oo

Wiy, z9,w) = UN)U(z2) . i T Tn exp[—i2a(maz — naa)/d]

TR O R 0D

xS To(om)oln)ole — (e + pF)] ©6)

p=—co

where §(z) is the Dirac delta function and f = 1/T. This cross-spectral density function
can be propagated to any observation plane using Eq. (4.20). The angular correlation
function is

Alay,a0,w) = i i T T A (o ~ mfd)A{as — njfd)
X 3 lom)alon)il e + 25 o

Whern the moving grating is realized using an acousto-optic device the beams corre-
sponding to different diffraction orders are uncorrelated [177]. Equations (9.6) and (9.7)
imply that in the case of vibrating grating the different diffraction orders are partially
correlated.
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9.2 Bragg selective gratings

As it was seen in Section 7.2, volume gratings can have a diffraction efficiency close to
100% when illuminated by a plane wave at the Bragg angle. However, the efficiency
depends strongly on the angle of incidence and thus it is possible to improve the spatial
coherence properties of an optical field using a volume grating as a filter [57, 183].

9.2.1 Coherence analysis

The grating, which is located between the planes z = 0 and z = &, is illuminated by a
spatially partially coherent field with angular correlation function

Al (o, 0, 2) = \/Ai“(al, ay, ) A™ (o, g, 2)™ (v, 2, 7). (9.8)

"The cross-spectral density function behind the element is

o0 &
Wy, ma,h) = 3. D, Whales,22,h), (9.9)
where
Wt (z1,32,h) = expi2n(ma; — nzs)/d] (9.10)

x/f_m AR (e, g, 0) T2 {o ) T o) exp [—i2m(c1 2y = qae)] davydevy

and T, (c) is the amplitude of the mth diffracted order when the grating is illuminated
by a plane wave with incident angle 8, and o = (n;/A}sin 8.
The angular correlation function at the plane z = h is

oo o0
At(al,az,h)z Z Z A:m(al,ozg,h), (911)

M=—00N=—00

where
A (ay, @, h) = AMay — mfd, ay — n/d,0)Ty () — m/d)Th(as — n/d). (9.12)

If the beams corresponding to different diffracted orders do not overlap in the far-zone,
we need only to calculate the angular correlation function A%, {a1,0s, k) to determine
the coherence properties of the mth-order diffracted heam. We obtain

AL (e, ,2) = Abu{a, 00, B Al (0, 0, B (@, B), (9.13)

where

At (a0, h) = [Tnla — m/d)|PA™ @ — m/d, a — m/d,0) (9.14)
and
Thloy —m/d) Tn(ay —m/d) 5
To(on = m/d)] ng(az — m/d)]y (), - mjd,as —m/d,0). (9.15)

Vo, g, h) =

Thus the angular self-correlation function of the mth-order diffracted beam is determined
by the angular correlation function of the incident beam and the amplitude Trn (), while
the absolute value of the complex degree of angular correlation is a shifted replica of the
corresponding incident quantity.
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9.2.2 Examples
We consider three different gratings:

1. A binary surface-relief grating with permittivity distribution

e = {1 g ii s @19
where d = A, h = 1.634X, ny = 1.5, nz = 1.0.
2. A sinusoidal index-modulated grating with
ér{x,2) = €, + Ae, cos(2ra/d), (9.17)

where /&, = n; = ng = 1.5, Ae, = 0.04545, d = (.8), and h = 30X

3. A sinusoidal index-modulated grating with n; = ns = 1, /& = 2.25, and & = 2000\
with either (a) Ae, = 1.091 x 107% and d = 1.10X or (b) Ae, = 1.057 x 10~ and
d = 0.99A.

Grating 1 has been optimized in Ref. [184] to have a maximum —1st order diffraction
efficiency at Bragg incidence, while the permittivities of gratings 2, 3a, and 3b are op-
timized using Eq. (7.17). We assume that the incident field is a TE polarized Gaussian
Schell-model beam arriving at the first Bragg angle of the grating:

Wi, 22,0) = exp [—(cc§ + 'ri}/wz] axp [—(:cl - 3:2)2/202] exp [—in(z, — x3)/d].
(9.18)
Here w and o are the e~ half-width of the intensity distribution and the e~1/2 half-width
of the complex degree of spatial coherence, respectively.

In Fig. 9.2 the diffraction efficiency of the zeroth and first diffraction orders of grating
1 with a plane wave illumination are shown. Although the element is a binary lamellar
element, the maximum efficiency of the first order is over 95%. However, the angular
selectivity is rather weak and it is not possible to have significant improvement of coher-
ence.

In Fig. 9.3 the efficiencies of grating 2 with plane wave illumination are shown. The
efficiencies are close to those predicted by Egs. (7.10) and (7.11). Grating 2 is then
illuminated by a Gaussian Schell-model beamn (9.18) with w = ¢ = 10). The angular self-
correlation functions of the incident field and the zeroth and first order diffracted beams
are illustrated in Fig. 9.4. Since w = o, the form of the degree of coherence v'"{a, o}
(here ap = (ny/A)sinfz and fg is the first Bragg angle of the grating) is the same as
the angular self-correlation function of the incident beam. The angular self-correlation
function of the first-order diffracted beam is narrower than that of the incident beam,
while, as shown in Eq. (9.15), the modulus of the complex degree of angular coherence
remains unchanged. Thus the width of the spatial coherence distribution compared to
the width of the far-zone intensity distribution has been improved.

The diffraction efficiencies of gratings 3a and 3b with plane wave illumination are
illusirated in Figs. 9.5a and 9.5b. Even though both ¢lements have been optimized to
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Fig. 9.2: Rigorously evaluated efficiencies 5., (solid line) and 7o (dotted line) as
functions of the angle of incidence #: fully coherent plane wave and grating 1.
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Fig. 9.3: Same as Fig. 9.2, but for grating 2.

produce 100% efficiencies according to Eq. (7.11), the rigorously calculated efficiency of
the first order in the case of grating 3a is less than 50%, while grating 3b has an efficiency
of =2 90% due to Fabry-Perot effects. If the elements are illuminated by a Gaussian-Schell-
model beam described by Eq. (9.18) with w = ¢ = 10A, the first-order diffracted beams
are almost completely spatially coherent. However, the efficiencies are low because of the
strong angular selectivity: most of the transmitted energy propagates in the direction of
the zeroth diffraction order.
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Fig. 9.4: Far-zone diffraction pattern of a Gaussian-Schell-model beam with w =
o = 10, generated by grating 2. Solid line: AB'D(Aq&,Aqb, h} when Ae, = 0. Dotted
line: AY; _;(A¢, Agh, k). Dashed Jine: Ab o(Ad, Ag, k). Here Ad=¢-gifm=10
and Ag=¢+ 0 if m= —1.
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Fig. 9.5: Same as Fig. 9.2, but for (a} grating 3a and {b) for grating 3b.




Chapter 10

Propagation invariance and self-imaging

In this Chapter we investigate three topics. First, the Talbot effect [185] with spatially
partially cokerent illumination is analyzed. Then the validity of the paraxial approxima-
tion in the Lau effect [58] is evaluated. Finally, a novel quasi-rigorous analysis method
of diffractive axicons is introduced for the analysis of approximate zeroth-order Bessel
beams [186,187] generated by diffractive axicons {188].

10.1 Talbot effect

The longitudinal periodicity of a laterally periodic completely spatially coherent field in
the paraxial approximation is known as the Talbot effect (185,189]. Many applications,
such as array illuminators [190-194] and interferometers (195] based on the Talbot effect
have been suggested. Later it was found that in non-paraxial cases the Talbot patterns
become strongly distorted [196, 197).
Consider the geometry in Fig. 10.1. A grating with complex-amplitude transmittance
function
oy
tamw) = 3 Tnlw)exp(i2rme/d), (10.1)

where
1 d
Tonfw) = = f #(2; w) exp(—i2rma/d)dz, (10.2)
0

zlg+h z

Fig. 10.1: Geometry of the Talbot effect.
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is illuminated by a uniform-intensity Schell-model field with cross-spectral density func-
tion

W (1, 22, 0w) = S{w)p(zy, 2, 05 w), (10.3)
where 1
Sw) = o P |~ (w ~ @)2/T?] (10.4)

is the spectrum of the field (we assume a quasimonochromatic field, i.e., w 3> T'}, and
(1,2, 030) = exp (@1 — 2)?/20%(w)] (10.5)

is the complex degree of coherence. Then, using Egs. (7.8) and {4.20), the spectral density
at plane z = constant is found to be

Sz, z;w) = Wiz, 25w)
o0

S(w) > f: T (w) Ty (w) exp [—i2x (m — n)z/d]

m=--03 n=—00

il

X /:: V2ro(w)exp [—zwzaz(w)(a' - m/d)z}
x exp {—i2m [w* (o w) — wla — {(m — n)/d;w)} Az} da,  (10.6)

where Az = z — h, and w(a;w) is given by Eq. (3.3). The intensity pattern observed at
the plane z = constant is

I(e,2)= [ S(w,zw)d 10.7)
,7)= | x,z;w)dw. (10.7
In the coherent limit, i.e., when o{w) —+ co, one can use the expression
5(x) = Jim [aexp(-na’a?)] (10.8)
to obtain
o 2
Sz, zw) = S(w)| Y Twm(w)exp(i2rma/d)exp [i2aw(m/d;w}Az] | . (10.9)
TIL=" 00
Using the paraxial approximation (3.6) in Eq. (10.6), we obtain
Sz, mw) = Sw) 3. Y Tr(w)Th(w)exp [—i2r{m — n)z/d) (10.10)
m=—00 n=—00
X exp {—%(m —n)? {)\Az/cr(w)d]z} exp [im\ (m2 - nz) Az/dz]
In the coherent limit, we find that S(z, h;w) = S(z, b + pzr;w), where
zp = 2d3 /A (10.11)

is called the Talbot distance and p is an integer. However, interesting intensity patterns
can oceur also at distances z = h + zr/q, where g is an integer [190,193].
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10.1.1 Examples

Let us consider the diffraction pattern of a binary phase grating with d = 50, fill factor
e/d = 1/2 and phase-delay 7 /2 across the plane z = h+2r/4 [190], and diffraction pattern
of a 3-level grating
3n/4, 0<z<d/d
b(z) = T, dfd <z <df2
) 3n/d, dj2 <z <3df4
0, 3dfd <o <d

(10.12)

with the same period at z = h = z7/8 [193]. According to the paraxial approximation
they generate binary intensity patterns with fill factors 1/2 and 1/4, respectively.

In Fig. 10.2, the binary element with monochromatic illumination (I' — 0) is an-
alyzed. Strong intensity fluctuations are observed with spatially coherent illumination
(Fig. 10.2a) {196,197]. However, when the spatial coherence is reduced, the fluctuations
are smoothed out. At the same fime the spot boundaries hecome more inclined. In
Fig. 10.3, the same is illustrated for the three-level element. In both cases if is possible
to find coherence conditions in which the spots are of high-quality flat-top form.

The effect of polychromatic, but spatially fully coherent illumination is illustrated
in Figs. 10.4 and 10.5. The intensity fluctuations are smoothed out, but the resolution
decreases faster than with spatially partially coherent monochromatic illumination. This
is related to wavelength dependence of the Talbot distance zr.

10.2 Lau effect

If two gratings G; and G, are placed a distance Az apart as in Fig. 10.6 and G, is
illuminated by spatially incoherent quasimonochromatic light, high contrast fringes can
be observed in the far-zone under some specific conditions. This effect, known as the Lau
effect [58], has been analyzed using different paraxial approaches [189,198-202] and dif-
ferent kinds of gratings [203-205]. Applications including interferometers [206-208] have
been proposed. Similarities between the Talbot and Lau effects have been investigated
in several papers [209-211,189]. Recently, the validity of the paraxial approximation has
been analyzed in Ref. [59].

We assume that both G4 and Gy can be treated as thin elements. The cross-spectral
density function just behind the grating 7, can be written as

Wz, 41, @2, y2, ha) = I(@1, 41, )8y = 22,1 — 42)/(0,0), {10.13)
where the Dirac delta function is understood as a limit

8(z,y) = lim {(27r02)_1 exp [—(a:2 + yz)/202]} (10.14)

and I(z,y, h1) is the intensity distribution after grating G,, normalized as

1 pd
E_[o I({El,yl,hl)dflil = 1. (1015)
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I\

GO 10 20 30 40 50

xfh

Fig. 10.2: Effect of spatial coherence in the spot array generated by a binary
phase grating of period d = 50 at 2 = A+ z7/4. (a) Full coherence o{&) = oc. (b)
(@) = 10d. (¢} o{@) = 2d.
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0 10 20 30 40 50

Fig. 10.3: Effect of spatial coherence in the spot array generated by a 3-level
phase grating of period d = 50X at z = h+2r/8. (a) Full coherence o (D) = 00. (b)
a{@) = bd. (¢) of{) = 1.2d.
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00 10 20 30 40 50
XA

Fig. 10.4: BEffect of polychromatic illumination in the spot array generated by a
binary phase grating of period d = 50X at z = h+ 2p/4. (a) &/ = 50. (b
@/T' = 10. The coherent case is shown in Fig. 10.2a.

Since I{x,y, hy) is a periodic function, it can be expressed as a Fourier series

Hzy,p,h) = Z Crnexp{i2anz/d), (10.16)

N=—03)

where the Fourier coefficients C,, are
1 rd
Ca=3 [ (@1, 91, h1) exp(—i2rnz/d)de. (10.17)
0

The complex-amplitude transmittance function of grating G, is

t(z) = i Tyexp(i2rpz/d), {10.18}

p=—00

d
Ty = %ifo t(z) exp{—i2apa/d)dz.
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xfh

Fig. 10.5: Effect of polychromatic illumination in the spot array generated by a 3-
level phase grating of period d = 50A at © = h+21/8. (a) @/T =50. (b) @/T = 15.
The coherent case is shown in Fig. 10.3a.

0h, AZHh, z

Fig. 10.6: The geometry of the Lau effect.




64 10 Propagation invariance and self-imaging

Using Eqs. (7.8) and (4.20), the angular self-correlation function {4.21) after G; is
found to be

o

Ala, ) = Z Z Cp—o Ty Ty exp{ —i2{w" (e — p/d, B) — w(a — ¢/d, 8)]Az}, (10.20)
p=—00 q=—00
where w(a, 8} is given by Eq. (3.3). Applying the paraxial approximation (3.6), Eq. (10.20)
can be written as

o0 Q3
Ale,B)= 3. Y. CpoTyTyexplin(p® — ¢*)AAz/d?] exp[—i2x(p — q)AMAza/d], (10.21)
P=~00 g=—00
which is a periodic function of period A = d/ Az, If grating G, is a Ronchi ruling with
infinitely narrow slits, i.e., C, = 1 for all n, an analogy with the fully coherent Talbot
effect can be observed [59, 189).

10.2.1 Examples

Let us assume that the first grating is a Ronchi ruling with infinity narrows slits. In
Figs. 10.7, the angular self-correlation function is plotted, assuming that Gz is a binary
amplitude grating with £ill factor 1/2, and that the grating separation is Az = zp, where
zr is the Talbot distance. Strong fluctuations are observed even when the grating period
is d = 500A, since the field after the incoherently illuminated grating (5 is inherently
non-paraxial. In Fig. 10.8 the angular self-correlation function is shown, assuming a
binary phase grating G, with phase shift ¢ = = /2, fill factor 1/2, and grating separation
Az = zpfd.

Let us assume that the slits of G) have a finite width. In Fig. 10.9, the angular
self-correlation function is illustrated with various widths of G;, while G5 is the same
as in Fig. 10.8a. The fluctuations are significantly reduced, but the edge resolution is
simultaneously decreased.

10.3 Propagation-invariant fields

There exists a wide class of fields, which are beam-like (in a sense) and propagation
invariant [186, 187,212, 213], i.e., the transverse intensity profile is independent on the
propagation distance. The simplest scalar example is the zeroth-order Bessel beam

Ulz,y,z) = Jolop) exp(ifz), (10.22)

where a® + 82 = k%, p? = 2% + ¢ and Jy is the zeroth-order Bessel function. Since the
Bessel function Jo{p) decays as 1/p when p — oo, the energy of this field is infinite.
Therefore the ideal Bessel beam is physically unrealizable.

There exist several ways to generate approximate zeroth-order Bessel heams, which are
nearly propagation-invariant hetween some planes z = z; and z = z;. Since the zeroth-
order Bessel beam is a conical wave, one can use an annular aperture to generate it [186,
214]. Alternatively, Fabry-Perot resonators [214] and refractive {215,216] or diffractive
axicons [188} may be used. Here we analyze an approximate Bessel beam generated by
a diffractive axicon, i.e., a circular grating with constant local period, by using a novel
quasi rigorous method.

L

32
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e

-0.5 0 0.5 1 1.5
10000

Fig. 10.7: Non-paraxial analysis of the far-zone difiraction pattern of a binary
amplitude grating in the Lau set-up with grating separation Az=zp: (a) dfA = 10;
(bY dfX ="50; (c) dfX = 500. Solid line: non-paraxial analysis. Dashed line:
paraxial analysis.
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Fig. 10.8: Non-paraxial analysis of the far-zone diffraction pattern of a binary
phase grating with phase delay /2 in the Lau set-up with grating separation Az =
zpe (a) d/X = 10; (b} d/A = 50; {c) d/x = 500. Solid line: non-paraxial analysis.
Dashed line: paraxiat analysis.
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10.3.1 Quasi-rigorous analysis of diffractive axicons

Let us assume that a diffractive axicon is located between the planes z = 0 and z = h,
and illuminated by a completely coherent z-polarized field,

E™(z,y,z) = £E™(z,y,2) = &A.(p) exp(ikn,z). {10.23)

Here pt = 2% + y2, A{p) is the radially symmetric amplitude distribution, and n, is
the refractive index in the region < 0. This is not necessarily an exact solution of
Maxwell’s equations, but if A,(p) varies slowly compared to the wavelength, it is an
excellent approximation.

Consider the coordinate system introduced in Fig. 10.10. At the point {(z,y,z) we use
local coordinates 5 and ¢ and write the incident field as

B p,,7) = PEy(p, 8,2) + $ES (0, 8, 2), (10.24)
where .

EMp.¢.z) = Ag(p)cosdexp(ikniz), {10.25)

Efp,$,2) = —Ag(p)sin¢exp(ibniz). (10.26)

We assume that the grating diffraction problem can be treated locally, which permits a
one-dimensional analysis. The field Ey4 after the element is

E(p, ¢, h) = EP(p, ¢,0) i T, exp(i2mmp/d) exp [it, (2 — R)], (10.27)

where
kg — (2em/d)®  when |m| < dng/A

. , (10.28)
iv/(2rm/fd)® — k2n3  otherwise.

ki3

and the Fourier amplitudes Ty, of the transmitted field can be solved using the methods
introduced in Chapter 5 in TE polarization.

Y

Fig. 10.10: Local coordinate system.
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In TM polarization, H}' is obtained using Maxwell’s equation {2.3). The field just
behind the element assumes the form

Hip, ¢, h) = Hy(p,9,0) Y. Spexp(i2mm/d)exp [itm(z — b)], (10.29)
where the coefficients Sy, can also be solved using rigorous diffraction analysis.

Using Maxwell equation (2.4), the electric field components E}, and E can be easily
solved. Switching back to the global coordinates, one cbtains

Ei(p,,h) = Ap) 3 [(1tm/ k) S cOs? ¢ + T sin? ] exp(i2amyp/d), (10.30)

me=—00

E;{p,qi,h) = Alp)singcose i (Mt /R)Sn — To) exp(i27mp/d), (10.31)
EXp,d,h) = —A(p)(nl)\/d)cosqbimsmexp(i?ﬁmp/d}. (10.32)

The magnetic field components can be solved from Maxwell’s equation (2.3) and the y-
polarization can be treated analogously. Once the field components have been solved at
z = 0, they can be propagated separately to the observation plane by means of Eq. (3.12).

Similarly one can analyze more complicated diffractive elements, which generate higher-
order propagation-invariant fields. This method can also be extended to the analysis of
diffractive lenses. The work in this direction is currently under way.

10.3.2 Examples
Let us consider the following lamellar elements:
1. Binary element with - = X and local period 1.5A.
2. Four-level element with optimized [141] structure and local period 1.5).
3. Binary element with A = A and local period 5A,
4. Four-level element with optimized [141] structure and local period 5A.

We assume that the radius of the aperture of the element is 40\ and that an opagque disk
of radius 5 exists around the origin. The refractive indices are n; = 1.5 and ng = 1. The
4-level structures have been optimized for maximum minus first order diffraction efficiency
in both TE and TM polarization [141]. The binary elements have a fill factor of 1/2 and
a profile height i = A. The incident field is assumed to be a plane wave, i.e., A(p) = L.
Figure 10.11a illustrates axial intensities after gratings 1 and 2 under z-polarized
illumination. Since only orders m = £1 and m = { exist, the only effect introduced by
the optimized element is an increased axial intensity. In Fig. 10.11b, the local period of
the element, is d = 5\. Strong interference between different diffraction orders takes place
behind the binary element. In the case of 4-level element, this interference is reduced
because the efficiencies of the diffraction orders other than m = ~1 have decreased.
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Fig. 10.11: Axial intensities: (a) ¢ = 1.5\, (b) 4 = 5.0\, Dotted line: binary
element. Solid ling: optimized 4-level element.

Figures 10.12 and 10.13 illustrate the transverse intensity distributions at distances
z = h+ 100X and z = h + 200X, respectively, behind element 3, illuminated by an 2-
polarized plane wave. The radial intensity is an approximation of a Bessel function,
and the widsh of the central peak remains approximately constant. Also the distribution
is found to be almost radially symmetric, which was to be expected since the element
operates close to the paraxial domain. Figure 10.14 illustrates the transverse intensity
profile at the distance z = h + 40A. Due to the interference of several conical diffraction
orders, the radial intensity is no longer a good approximation of the lowest-order Bessel
function.

When the period d of the circular grating is reduced, the transverse intensity profile
is no longer radially symmetric. Figure 10.15 shows the transverse intensity distribution
at a distance z = h + 40X, behind grating 1 illuminated by an a-polarized plane wave.
In Fig. 10.16, clement 1 is illuminated by a circularly polarized field. The transverse
intensity is now radially symmetric even though the local period is small. A symimetric
mtensity distribution is also obtained with unpolarized illumination.
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yiA -10 10 X/

Fig. 10.14: Same as Fig. 10.12, but z = h + 40X,
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o o
S ©
: z

Fig. 10.15: Transverse intensity distribution at z = h + 40X. The period of the
binary element is d = 1.5A. The incident field is a linearly z-polarized plane wave.
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Fig. 10.16: Same as in Fig. 10.15, but the incident field is circularly polarized.




Chapter 11

Zeroth-order diffractive elements

11.1 Introduction

If the signal is encoded into the zeroth order of a diffractive element one speaks of a zeroth-
order element. If the element is a grating with a period d < A, only the zeroth transmitted
and reflected diffraction orders can propagate and the element can be investigated using
the effective medium theory [62,139,140]. These elements can be understood as artificial
dielectric media [217-223] with effective refractive indices that depend strongly on the
polarization state of the incident field. Therefore polarization dependent clements are
possible [224-226]. Furthermore, applications such as grating antireflection surfaces [227]
and guided-mode resonance filters {228-232} exist.

When a diffractive element is designed, one normally uses the amplitude freedom
(Section 8.1) and thereby permits noise outside the signal window. Usually this noise
concentrates in the immediate neighborhood of the signal window, where it may disturb
the optical function of the element. One can eliminate this by enlarging the signal window
(by including a zero-frame around the signal), which leads to more complicated elements
and a considerable increase in the computational complexity. The other possibility is to
use elements that control both the amplitude and the phase of the field. Such elements can
be realized, e.g., by a double-layer technique {233], which however is difficult to calibrate.
The alternative is the use of a carrier grating, which defiects the signal off-axis [24]. Here
we consider complex-amplitude modulating elements, which deflect the noise off-axis and
leave the signal on-axis [60,61].

11.2 Zeroth-order complex amplitude modulation

A lamellar grating with periods d, and d, in z and y directions, respectively, is divided
into I x L cells of equal size. With K cells in the 1D geometry, K diffraction orders
separate the signal in the zeroth carrier-grating diffraction order and the noise that is
deflected in higher carrier-grating orders. The depth and the fili factor associated with
the cell (k,!) are denoted by hy and fi, respectively, and h = A/(n — 1), where n is the
refractive index of the element. We assume K = L and d. = d, = d = Kd,, where d,
represents the carrier grating period. Figure 11.1 illustrates the geometry of a 1D grating
with fill factor f; = ¢1fd..

If K=L=1(fy = f and hyy = h), the complex amplitude of the zeroth diffraction
order is, according to the complex-amplitude transmittance theory,

T=1—f+ fexp[—ik(n—1)h. {11.1}
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6 N,  x id, z
Fig. 11.1: Geometry of zeroth-order complex-amplitude encoding in one dimension.
This result is independent on the shape of the lamellar valley and it is valid also in 1D

geometry. If we write T = Aexp(i®}, where A is the amplitude and @ is the phase of the
zeroth order, we obtain

1— A2
f=1- 2{(1 — Acos®) (11.2)
and
. A . 1
exp [ik(n — 1}h] = 7 exp(i®)+1— 7 {11.3)

We sample the complex-amplitude distribution in cells (k, 1) according to Ty = T(xp, g} =
Ayexp(i®y), wherek = 1,..., K andi=1,..., L. These amplitudes can be encoded into
the zeroth diffraction order according to Egs. (11.2) and (11.3). The shape and location
of the valley can vary from cell to cell, since a lateral shift of the grating has no effect in
the complex amplitude of the zeroth order (see Section 5.2.1).

11.2.1 Examples

For fabrication reasons, only @y fill-factor values and Q. depth values can often be re-
alized. Choosing Q; = Q. = @ we consider Q@ = 8 in the 1D geometry of Fig. 11.1.
In Fig. 11.2 the available phase and amplitude combinations are calculated using the
complex-amplitude transmittance method and rigorous diffraction theory. The size of
the cell in the rigorous calculations is d, = 42X, the refractive index is n = 1.5, and the
effects of boundary reflections are ignored. In two-dimensional encoding, the minimum
feature size required for a given carrier period is larger, and the allowed amplitude-phase
combinations are more equally distributed in the amplitude/phase space [61].

Let us consider elements with two-point and three-point signals. Using Eq. (8.2), the
required complex-amplitude transmittances are found to be

t(z) = cos(2mz/d) exp(igh ) (11.4)

and

H(z) ~ 0.809 [cos(2mz /d) + cos(6mz/d) exp{i1.8089)] exp(irhs), (11.5)
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A4
amplitud

Fig. 11.2: Allowed phase-ampiitude combinations, 8 quantization levels in both
lateral and depth directions; (a) using scalar diffraction theory, (b) using rigorous
diffraction theory with d, = 4.

where 1, and ¢, are arbitrary phase factors). The efficiencies are 50% and 60%, re-
spectively {60]. Using Egs. (11.2) and {11.3), the required fill factors and depths can be
calculated. Figures 11.3a and 11.3b show the profiles of these elements with L = 25 and
) = 16.

Figure 11.4 illustrates the uniformity and the noise of the encoded three-point ele-
ment using complex-amplitude transmittance theory. The signal uniformity is defined as
U = (Mmax — Tmin)/ (Mmax + Tmin), Where Pma and 7pie are the maximum and minimum
efficiencies of the signal diffraction orders. The noise is defined to contain the energy in
non-signal diffraction orders m = ~10,...,10. The rigorous electromagnetic analysis of
both elements can be found in Ref. [60].

The second example is a two-dimensional 3 x 3 array. The optimal complex-amplitude
transmission function is obtained using an iterative Fourler-transform algorithm with
gradual clipping at the plane of the element, as introduced in Ref. [61]. The encoded
structure of the element with K = L = 64 and @ = 16 is illustrated in Figure 11.5. In
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Fig. 11.3: Structures of encoded elements: a) two-point signal, b) three-point signal,

Fig. 11.6 the results of the complex-amplitude transmittance analysis of this element is
shown. The noise is defined to contain non-signal orders in the range m = —10,...,10
and n = —10,...,10. The ncise and uniformity are plotted as a fanction of the number
of cells L with different quantizations.

One can easily design diffractive elements which have the same signals as in our pre-
vious examples, but higher efficiencies. However, with our encoding method, the noise
can be zero in quite a large neighborhood of the signal. The main negative feature in
our encoding method is that elements with relatively simple signals, as in our examples
{Figs. 11.3 and 11.5), have usually rather complicated structures.
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Fig. 11.5: Structure of one period of a 3 x 3-element: different gray levels indicate
profile depth: in the white areas h; = 0, and in the black areas i; = h.
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Chapter 12

Waveguide analysis with diffractive optics

In this Chapter we apply the rigorous diffraction analysis methods introduced in Chapter 5
to the analysis of modulated dielectric waveguides, which forms the basis of integrated
optics [234]. This is achieved by replacing the original waveguide structure with a corre-
sponding periodic element and choosing the period so large that the effect of periodicity
becomes insignificant [235]). The advantage is that the spectrum of eigenvalues becomes
discrete, which greatly simplifies the analysis. This goal can also be achieved by apply-
ing perfectly conducting boundary condition as in Section 6.2 [133]. However, the latter
approach leads to somewhat more complicated calculations. Here we analyze the conver-
gence of the mode eigenvalues, the problem of beam focusing into a planar waveguide, and
scattering by waveguide discontinuities. Similarly one can investigate, e.g., output cou-
pling [236,237] directional couplers [238-242] and distributed Bragg reflectors [243,244].

12.1 Waveguide modes

There exist different methods to solve the modes of a waveguide: see, e.g., Refs. [245-250].
Here we solve the modes using the eigenmode method presented in Chapters 5 and 6. We
consider a planar waveguide located between a homogeneous substrate {z < 0) and a
cover layer (z > d,) with refractive indices n, and n,, respectively (Fig. 12.1), and TE
polarization. The refractive index of the waveguide region {0 < z < d,) is assumed to be
piecewise constant: n{x} = n; whenever 2; < @ < @4, with 2; =0 and 2,4, = d,.

The field must obey the Helmholtz equation in each homogeneous region and the

X

n
1rd
X =0
m,
XL
X,
1+1 m
X
X3
L)
X3
m
X,=0 n, z

Fig. 12.1: Geometry of a planar waveguide.
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Fig. 12.2: Geometry of a waveguide with periodic boundary conditions

appropriate electromagnetic boundary conditions must be satisfied at each interface. The
solution for the guided modes is

E,(2,2) = X{(z)Z(z), (12.1)
where the function X{z) is

aqexp [—Bu(z — d,)] xz>d,
X(z) = { arsin(fx) + beos(fix) o <r<mpy (12.2)
as exp(fsz) z <0,

we have defined

Be =7t — (knc)?, (12.3)
B = (k)2 — %, {12.4)
Bs = /7% = (kng)?, (12.5)

and the function Z(z} is given by Eq. (5.21). By applying the boundary conditions, one
obtains a transcendental equation, which has zeros at v = 5. Once the eigenvalues v,
have been determined, all but one of the amplitudes a,, a;, b and ¢, can be determined
from the boundary conditions at © = 2;. The remaining amplitude is fixed by normaliza-
tion of the modes X (). Similarly, radiating and evanescent modes can be solved. The
spectrum of the guided modes is discrete, but the radiating and evanescent modes have
continucus spectra.

The idea of replacing the waveguide by a corresponding periodic structure was intro-
duced in Ref. [235]. Let us suppose that the waveguide shown in Fig. 12.1 is replaced by
an infinite array of elements as illustrated in Fig. 12.2. The waveguide regions in each
period are supposed to be identical with the original waveguide. The thickness of the
substrate and cover layers in each period are supposed to be d, and d_, respectively. Thus
the period of the resulting grating is d = d, +dy + d.. Now the modes can be solved using
modal methods introduced in Section 5.4.
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Fig. 12.3: Convergence of the eigenvalues using periodic boundary conditions: The
logarithmic error of the eigenvalues when (a) dg = 0.21 pum, (b) d; = 0.70 pm. Solid
lines: m = 0. Dashed [ines m = 1. Dotted lines: m = 2,

In Fig. 12.3 the convergence of the eigenvalues Vm is shown as a function of d, = d,.
The quantity log(error) is defined as log | (4, — Yo )/ 75|, where 48 and ., are the exact
waveguide eigenvalue and the eigenvalue calculated with periodic boundary conditions,
respectively. We have assumed a single-layer waveguide, refractive indices n, = 1.55,
ny = 1.97, n, = 1, and A = 0.6328 um. The thickness of the waveguide layer is either
dy = 0.21 pm (single-mode waveguide, Fig. 12.3a) or d, = 0.70 pm (three-mode wave-
guide, Figs. 12.3h). The grating eigenvalues are calculated using the Legendre-polynomial
expansion method of the exact eigenmodes, introduced in Section 5.4.2.

12.2 Beam coupling into a planar waveguide

Let us consider the coupling of a Gaussian beam into a planar waveguide as illustrated
in Fig. 12.2.

For comparison with the quasi-rigorous approach with periodic boundary conditions
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Fig. 12.4: The geometry of waveguide incoupling.

we apply a well-known overlap integral method [243,251]. Since the modes are orthonor-
mal one can represent the incident beam in the base of the modes (provided that the
base is complete). Then the coupling efficiency of an incident beam U™ to the mth mode
Xn(z) is

2 o X (@)U () de 2
VIS5 Xl dz [25 [Una(z) Pd

With periodic boundary conditions, the efficiency of input coupling can be directly cal-

culated by applying the methods presented in Sections 5.4.4 and 6.3. Rather than having

several sampling points in Eq. (6.32), one sampling point is used and the period of the

element is increased to guarantee convergence. Thus one can directly apply Eq. (5.46).
In order io calculate the coupling efficiency, we define the energy flow P as

n= (12.6)

P =/_d§+d°<sz<x,z)>dm, (12.7)

where S.{z,z) is the 2-component of the Poynting vector of either the incident, the re-
flected or the transmitted field. The coupling efliciency into the mth mode is then

'Ynlan|2 Yoo |an!2
T s R A

where P, are the projections defined in Eq. (5.47) and A; represent the sampled values
of the incident angular spectrum.

We consider the coupling of an incident Gaussian beam into a planar waveguide. The
Gaussian bean is written as

Nm = P/ P™ = (12.8)

EMz,0) = Byexp|—(z — zo)* /u’], (12.9)

where zo and w define the heam position and width, respectively. In Figs. 12.5 and
12.6 the coupling efficiencies are shown as functions of w and e, using rigorous periodic
boundary conditions and the overlap integral method, respectively.
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Fig. 12.7: Periodic waveguide with discontinuities.

Figures 12.5 and 12.6 show that the overlap integral method is rather accurate. How-
ever, when the width of the beam is narrow its predictions differ significantly from the
rigorous results.

12.3 Waveguide discontinuities

Several different analysis methods of waveguide discontinuities, such as finite-element
and boundary-element methods [252-255], integral methods (256,257}, and the method of
lines [258], exist. Here we treat similar problems using periodic boundary conditions.

Let us suppose a waveguide with discontinuities at the planes z = z;, as in Fig. 12.7.
Using the periodic boundary conditions, the modes in each slab z; can be solved as shown
in Section 5.4, while at each boundary one can apply the continuity expressed in Eq. (5.48).
Thus the propagation of the modes is completely described by grating diffraction theory.
The energy of each mode in region 2z; < z < &j41 is given by BEq. {12.7).

Let us consider the geometry of Fig. 12.8a. The wavelength is A= 1.2 pm and the
incident field contains only the zeroth-order mode. Figures 12.8b and 12.8c illustrate the
output phase shift and efficiency. The phase shift is defined as the difference between the
phases of the mode at z = h with and without modulation between the planes z = 0 and
z = h. The approximate value of the phase shift is obtained using the effective index of
the mode as

o= [ [nle) =] & (12.10)

where 4i" is the mode eigenvalue in the homogeneous regions z < 0 and z > h. Values of
d, and d, are chosen to be sufficiently large to guarantee convergence.

This method also facilitates the analysis of smoothly modulated waveguides. One can
then approximate the continuous refractive index distribution by a stack of multi-layer
waveguides. In Fig. 12.9 a typical index-modulated waveguide structure is illustrated,
which can be fabricated using two cousecutive ion-exchange processes [259-261]. In the
first step, a slit of width 2 = 10 pm is employed to generate the modulated area, and in the
second step the basic waveguide refractive index distribution is generated (259,262, 263].
Here n, = 1.523, n, = 1, and d; = 5 pm.




12.3 Waveguide discontinuities 87

¢ (rad)

h (um)

(©

0.8r

0.6

041

0 A I 1 A, 1 I
0 2 4 8 8 10 12 14

A (jum)

Fig. 12.8: The output of a cover-layer moduiated waveguide. {a) The structure of
the element and (b) the phase difference. Solid line: rigorous calculation. Dashed
line: effective index approximation. (¢} Qutput efficiency.




12 Waveguide analysis with diffractive optics

“\“‘\‘\{.\\\\\\\
AL

SR

3 A

\\\\\:‘\\\‘\\\\\:‘“\\:“““ 0y
\! “" ‘\:‘ i

\ “‘:“‘\‘:‘::‘:‘:‘\3\‘\:“\ SR

) ‘"’0’0’0“\

\“' 0'00

refractive index

Sole,

(i 5%
ettt ety
X ,:;'4,'0,:"0 Folete,
SIS ',‘,‘04.:,0.0
IR

10

00 z (um)

Fig. 12.9: Index-modulated waveguide structure.

In Fig. 12.10 the ion-exchanged modulated structure of Fig. 12.9 is analyzed. The
wavelength is A = 0.6328 pm. Again, the convergence was checked by increasing d, and
d.. Vatues as low as d; = d. = 5 pm were found to be sufficient.

It was seen that with the ion-exchanged index-modulated waveguide (Fig. 12.10}
it is possible to obtain better efficiency than with a cover layer modulated waveguide
(Fig.12.8). This is easily understood since with ion-exchanged index-modulated waveg-
uides the change on the refractive index is smoother, eliminating reflections from the
boundaries z = 0 and z = h. The mathematical analysis of index-modulated waveguides
is more complicated numerically. In our example, the element was divided into ~ 100 lay-
ers in the z direction, while only three layers were needed with the cover layer modulated
waveguide.
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Qutlook

The work presented in this thesis has already led to many further studies.

We have started to design and analyze also 3D multilevel diffractive elements. Such
elements, as well as many of those presented in this thesis will be fabricated using electron-
heam lithography.

Recently, we have analyzed diffractive lenses using the quasi-rigorous analysis method
introduced in Section 10.3.1. This work will be carried out in co-operation with University
of Bergen (Norway).

We also have plans to analyze more complicated waveguide structures, such as Bragg
gratings in waveguides, using 3D grating diffraction theory. Experimental investigations of
waveguides will be carried out together with Helsinki University of Technology (Finland}
and Universidade de Santiago de Compostela {Spain).

It is also planned to continue the work on optical coherence theory in co-operation
with University of Rome {Italy).
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